Enhanced Production of Phaeodactylum tricornutum (Marine Diatoms) Cultured on a New Medium with Swine Wastewater Fermented by Soil Bacteria

  • Kim, Mi-Kyung (Korea Plankton Culture Collection for Industrialization, Marine Research Center, Yeungnam University) ;
  • Chang, Moo-Ung (Department of Biology, Yeungnam University)
  • Published : 2006.12.30

Abstract

There have been a number of studies of methods for recycling animal wastewater to provide new bioresources. In the present work, a marine algal culture medium, designated KEP II, was prepared by adding swine waste (3% v/v) fermented by soil bacteria to a dilution of f/2 culture medium (CT). When Phaeodactylum tricornutum was grown in batch culture in KEP II, the cells lasted long at the exponential phase producing the specific growth rate and biomass; the production of total amino acids and secondary metabolites rose up to 5-fold. It also substantially enhanced the maximum quantum yield of photo system (PS) II of P. tricornutum, greatly increased the level of thylakoid membranes containing PS, and stimulated the production of pyrenoids, including enzymes for $CO_2$ fixation in chloroplasts. KEP II should improve the cost efficiency of industrial mass batch cultures and the value of microalgae for long-term preservation of fresh aquaculture feed as well as production of anticancer and antioxidant agents. Specifically, a low-cost medium for growing the diatoms of aquaculture feed will be economically advantageous.

Keywords

References

  1. Acien Fernandaz, F. G., D. O. Hall, G. E. Canizares, K. Krishna Rao, and E. G. Grima. 2003. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J. Biotechnol. 103: 137-152 https://doi.org/10.1016/S0168-1656(03)00101-9
  2. An, J. Y., S. J. Sim, J. S. Lee, and B. W. Kim. 2003. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J. Appl. Phycol. 15: 185-191 https://doi.org/10.1023/A:1023855710410
  3. APHA. 1995. Standard Methods for the Examination of Water and Wastewater. 19th Ed. American Public Health Association, Washington, DC, U.S.A
  4. Bich, N. N., M. I. Yaziz, and N. A. K. Bakti. 1999. Combination of Chlorella vulgaris and Eichhornia crassipes for wastewater nitrogen removal. Wat. Res. 33: 2357-2362 https://doi.org/10.1016/S0043-1354(98)00439-4
  5. Borkhsenious, O. N., C. B. Mason, and J. V. Moroney. 1998. The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiol. 116: 1585-1591 https://doi.org/10.1104/pp.116.4.1585
  6. Chang, M. U. 2001. Plant Viruses in Korea. Junghaeng-Sa Press, Suwon, Korea
  7. Charles, A. L., S. J. Markich, J. L. Stauber, and L. F. De Filippis. 2002. The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicol. 60: 61-73 https://doi.org/10.1016/S0166-445X(01)00260-0
  8. Craggs, R. J., P. J. Mcaulley, and V. J. Smith. 1997. Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Wat. Res. 31: 1701-1707 https://doi.org/10.1016/S0043-1354(96)00093-0
  9. Fabregas, J., A. Dominguez, D. G. Alvarez, T. Lamela, and A. Otero. 1998. Induction of astaxanthin accumulation by nitrogen and magnesium deficiencies in Haematococcus pluvialis. Biotechnol. Lett. 20: 623-626 https://doi.org/10.1023/A:1005322416796
  10. Fabregas, J., A. Dominguez, A. Maseda, and A. Otero. 2003. Interactions between irradiance and nutrient availabillity during astaxanthin accumulation and degradation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 61: 545-551 https://doi.org/10.1007/s00253-002-1204-4
  11. Fidalgo, J. P., A. Cid, E. Torres, A. Sukenik, and C. Herrero. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166: 105-116 https://doi.org/10.1016/S0044-8486(98)00278-6
  12. Gronlund, E., A. Klang, S. Falk, and J. Hanaeus. 2004. Sustainability of wastewater treatment with microalgae in cold climate, evaluated with energy and socio-ecological principles. Ecol. Eng. 22: 155-174 https://doi.org/10.1016/j.ecoleng.2004.03.002
  13. Guillard, R. R. L. 1973. Division rates, pp. 289-311. In J. R. Stein (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  14. Kawamoto, S. 1996. Experiment Results of BMW Techniques in the Farm of Kamegawa. Ecopeace Press, Daegu
  15. Khoshmanesh, A., F. Lawson, and I. G. Prince. 1996. Cadmium uptake by unicellular green microalgae. Chem. Eng. J. 62: 81-88
  16. Kim, S. K., H. C. Baek, H. G. Byun, O. K. Kang, and J. B. Kim. 2001. Biochemical composition and antioxidative activity of marine microalgae. J. Korean Fish. Soc. 34: 260- 267
  17. Kim, M. K., J. P. Dubacq, J. C. Thomas, and G. Giraud. 1996. Seasonal variation of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43: 49-55 https://doi.org/10.1016/0031-9422(96)00243-9
  18. Kim, M. K. and G. Giraud. 1989. Characters of neutral lipids of Detonula sp. in culture. Korean J. Phycol. 4: 55-61
  19. Kim, M. K. and H. W. Lee. 1998. Changes of ${\beta}$-carotene in fresh and dry thalli of Undaria pinnatifida and Enteromorpha compressa from Korea. Algae 13: 151- 155
  20. Kim, M. K. and R. E. H. Smith. 2001. Effect of ionic copper toxicity on the growth of green alga, Selenastrum capricornutum. J. Microbiol. Biotechnol. 11: 211-216
  21. Kobayashi, M. and T. Okada. 2000. Protective role of astaxanthin against U.V.-B irradiation in the green alga Haematococcus pluvialis. Biotechnol. Lett. 22: 177-181 https://doi.org/10.1023/A:1005649609839
  22. Kudo, I., M. Miyamoto, Y. Noiri, and Y. Maita. 2000. Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum. J. Phycol. 36: 1096-1102 https://doi.org/10.1046/j.1529-8817.2000.99042.x
  23. Lee, K. and C.-G. Lee. 2001. Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol. Bioprocess Eng. 6: 194-199 https://doi.org/10.1007/BF02932550
  24. Lee, K. and C.-G. Lee. 2002. Nitrogen removal from wastewaters by microalgae without consuming organic carbon sources. J. Microbiol. Biotechnol. 12: 979-985
  25. Martinez, M. E., S. Sanchez, J. M. Jiménez, F. E. Yousfi, and L. Muñoz. 2000. Nitrogen and phophorus removal from urban wastewater by the microalga Scenedesmus obliquus. Biores. Technol. 73: 263-272 https://doi.org/10.1016/S0960-8524(99)00121-2
  26. McLachlan, J. 1973. Growth media - marine, pp. 25-51. In J. R. Stein (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  27. Megharaj, M., H. W. Pearson, and K. Venkateswarlu. 1992. Removal of nitrogen and phosphorous by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb. Technol. 14: 656-658 https://doi.org/10.1016/0141-0229(92)90042-M
  28. Nagasaki, H. 1998. Bacteria Save the Earth - Challenge of BMW Technology. Ecopeace Press, Daegu
  29. Nichols, H. W. 1973. Growth media - freshwater, pp. 7-24. In J. R. Stein (ed.), Handbook of Phycological Methods - Culture Methods and Growth Measurements. Cambridge University Press, Cambridge
  30. Oswald, W. J. 1988. Micro-Algal Biotechnology, pp. 305- 328. Cambridge University Press, Cambridge
  31. Pehlivanoglu, E. and D. L. Sedlak. 2004. Bioavailability of wastewater-derived organic nitrogen to the alga Selenastrum capricornutum. Wat. Res. 38: 3189-3196 https://doi.org/10.1016/j.watres.2004.04.027
  32. Rawat, M., M. C. Henk, L. L. Lavigne, and J. V. Morney. 1996. Chlamydomonas reinhardtii mutants without ribulose- 1.5-bisphosphate carboxylase/oxygenase lack a detectable pyrenoid. Planta (Berl.) 198: 263-270
  33. Reis, A. 1996. Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuousflow reaction. Biores. Technol. 55: 83-88 https://doi.org/10.1016/0960-8524(95)00157-3
  34. Semple, K. T. 1997. Biodegradation of phenols by a eukaryotic alga. Res. Microbiol. 148: 365-367 https://doi.org/10.1016/S0923-2508(97)81592-6
  35. Shon, Y. H., K. S. Nam, and M. K. Kim 2004. Cancer chemopreventive potential of Scenedesmus cultured in medium based on swine wastewater. J. Microbiol. Biotechnol. 14: 158-161
  36. Suss, K. H., I. Prokhorenko, and K. Adler. 1995. In situ association of Calvin cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, feredoxin-$NADP^+$ reductase, and nitrate reductase with thylakoid and pyrenoid membranes of Chlamydomonas reinhardtii chloroplast as revealed by immunoelectron microscopy. Plant Physiol. 107: 1387- 1397 https://doi.org/10.1104/pp.107.4.1387
  37. Tomas, C. R. 1997. Marine diatoms, pp. 5-361. In G. R. Hasle and E. E. Syvertsen (eds.), Identifying Marine Phytoplankton. Academic Press, San Diego
  38. Torres, E., D. Cid, C. Herrero, and J. Abalde. 2000. Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum bohlin. Water Air Soil Pollut. 117: 1-14 https://doi.org/10.1023/A:1005121012697
  39. Tredici, M. R., M. C. Margheri, G. C. Zitelli, S. Biagiolini, and E. Capolino. 1992. Nitrogen and phosphorus reclamation from municipal wastewater through an artificial food-chain system. Biores. Technol. 42: 247-253 https://doi.org/10.1016/0960-8524(92)90028-V
  40. Lee, J. Y., T. S. Kwon, K. T. Baek, and J. W. Yang. 2005. Biological fixation of $CO_2$ by Chlorella sp. HA-1 in a semi-continuous and series reactor system. J. Microbiol. Biotechnol. 15: 461-465
  41. Kim, J. P., C. D. Kang, S. J. Sim, M. S. Kim, T. H. Park, D. H. Lee, D. J. Kim, J. H. Kim, Y. K. Lee, and D. W. Pak. 2005. Cell age optimization for hydrogen production induced by sulfur deprivation using a green alga Chlamydomonas reinhardtii UTEX 90. J. Microbiol. Biotechnol. 15: 131- 135
  42. An, J. Y., S. J. Sim, B. W. Kim, and J. S. Lee. 2004. Improvement of hydrocarbon recovery by two-stage cellrecycle extraction in the cultivation of Botrycoccus braunii. 14: 932-937