Mediation of Rubradirin Resistance by ABC Transporters (RubT1) from Streptomyces achromogenes var. rubradiris NRRL3061

  • Lamichhane, Janardan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Lee, Hei-Chan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Liou, Kwang-Kyoung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University) ;
  • Kim, Chun-Gyu (Department of Pharmaceutical Engineering, Inje University) ;
  • Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, SunMoon University)
  • Published : 2006.12.30

Abstract

The rubradirin biosynthetic gene cluster harbors 58 ORFs within a 105.6-kb sequence, which includes all of the genes responsible for the synthesis of rubradirin, as well as the primary genes relevant to regulatory, resistance, and transport functions. This gene cluster also harbors a resistance-mediating ABC transporter, RubT1, which is located at the most upstream position in the cluster. In the present study, RubT1 was expressed heterologously in E. coli, and the resistance affinity of RubT1 was determined by an antibacterial activity test, as well as by HPLC and ESI-MS analyses. Evidence clearly demonstrates that RubTl mediates rubradirin resistance as an ABC transporter.

Keywords

References

  1. Barrasa, M. I., J. A. Tercero, R. A. Lacalle, and A. Jimenez. 1995. The ard1 gene from Streptomyces capreolus encodes a polypeptide of the ABC-transporters superfamily which confers resistance to the aminonucleoside antibiotic A201A. Eur. J. Biochem. 228: 562-569 https://doi.org/10.1111/j.1432-1033.1995.tb20295.x
  2. Bhuyan, B. K., S. P. Owen, and A. Dietz. 1964. Rubradirin, a new antibiotic. I. Fermentation and biological properties. Antimicrob. Agents Chemother. 10: 91-96
  3. Bianchet, M. A., Y. H. Ko, L. M. Amzel, and P. L. Pedersen. 1997. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: Structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Bioenerg. Biomembr. 29: 503-524 https://doi.org/10.1023/A:1022443209010
  4. Chang, G. 2003. Multidrug resistance ABC transporters. FEBS Lett. 555: 102-105 https://doi.org/10.1016/S0014-5793(03)01085-8
  5. Cole, S. P., G. Bhardwaj, J. H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A. M. Duncan, and R. G. Deeley. 1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258: 1650-1654 https://doi.org/10.1126/science.1360704
  6. Epp, J. K., S. G. Burgett, and B. E. Schoner. 1987. Cloning and nucleotide sequence of a carbomycin-resistance gene from Streptomyces thermotolerans. Gene 53: 73-83 https://doi.org/10.1016/0378-1119(87)90094-1
  7. Fernandez, E., F. Lombo, C. Mendez, and J. A. Salas. 1996. An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol. Gen. Genet. 251: 692-698
  8. Fukui, T., H. Atomi, T. Kanai, R. Matsumi, S. Fujiwara, and T. Imanaka. 2005. Complete genome sequence of hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res. 15: 352-363 https://doi.org/10.1101/gr.3003105
  9. Grant, C. E., G. Valdimarsson, D. R. Hipfner, K. C. Almquist, S. P. Cole, and R. G. Deeley. 1994. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res. 54: 357-361
  10. Guilfoile, P. G. and C. R. Hutchinson. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88: 8553-8557
  11. Higgins, C. F. 1992. ABC transporters: From microorganisms to man. Annu. Rev. Cell Biol. 8: 67-113 https://doi.org/10.1146/annurev.cb.08.110192.000435
  12. Hopwood, D. A., M. J. Bibb, K. F. Chatter, T. Kieser, C. J. Brunton, J. B. Mervyn, M. J. Buttner, D. J. Lydiate, D. A. Smith, J. M. Ward, and H. Schrempf. 1985. Genetic manipulation of Streptomyces. In: A Laboratory Manual. John Innes Institute, Norwich, U.K
  13. Hyde, S. C., P. Emsley, M. J. Hartshorn, M. M. Mimmack, U. Gileadi, S. R. Pearce, M. P. Gallagher, D. R. Gill, R. E. Hubbard, and C. F. Higgins. 1990. Structural model of ATPbinding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346: 362-365 https://doi.org/10.1038/346362a0
  14. Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolates of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046
  15. Lage, H. 2003. ABC-transporters: Implications on drug resistance from microorganisms to human cancers. Int. J. Antimicrob. Agents 22: 188-199 https://doi.org/10.1016/S0924-8579(03)00203-6
  16. Lee, S.-K., C.-Y. Choi, J.-S. Ahn, J.-Y. Cho, C.-S. Park, and Y. J. Yoon. 2004. Identification of a cytochrome P450 hydroxylase gene involved in rifamycin biosynthesis by Amycolatopsis mediterranei S699. J. Microbiol. Biotechnol. 14: 356-362
  17. Linton, K. J., H. N. Cooper, I. S. Hunter, and P. F. Leadlay. 1994. An ABC-transporter from Streptomyces longisporoflavus confers resistance to the polyether-ionophore antibiotic tetronasin. Mol. Microbiol. 11: 777-785 https://doi.org/10.1111/j.1365-2958.1994.tb00355.x
  18. Olano, C., A. M. Rodriguez, C. Mendez, and J. A. Salas. 1995. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol. Microbiol. 16: 333-343 https://doi.org/10.1111/j.1365-2958.1995.tb02305.x
  19. Olano, C., A. M. Rodriguez, C. Mendez, and J. A. Salas. 1996. Topological studies of the membrane component of the OleC ABC transporter involved in oleandomycin resistance in Streptomyces antibioticus. FEMS Microbiol. Lett. 143: 133-139 https://doi.org/10.1111/j.1574-6968.1996.tb08472.x
  20. Olano, C., N. Lomovskaya, L. Fonstein, J. T. Roll, and C. R. Hutchinson. 1999. A two-plasmid system for the glycosylation of polyketide antibiotics: Bioconversion of epsilon-rhodomycinone to rhodomycin D. Chem. Biol. 6: 845-855 https://doi.org/10.1016/S1074-5521(00)80004-6
  21. Park, H.-J., Y.-J. Kim, and H.-K. Kim. 2006. Expression and characterization of a new esterase cloned directly from Agrobacterium tumefaciens genome. J. Microbiol. Biotechnol. 16: 145-148
  22. Park, M. J., J. O. Yon, S. K. Lim, D. D. Y. Ryu, and D. H. Nam. 2004. Biochemical characterization of an ABC transporter gene involved in cephabacin biosynthesis in Lysobacter lactamgenus. J. Microbiol. Biotechnol. 14: 635- 638
  23. Paulsen, I. T., M. H. Brown, and R. A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60: 575-608
  24. Reyes, C. L., A. Ward, J. Yu, and G. Chang. 2006. The structures of MsbA: Insight into ABC transporter-mediated multidrug efflux. FEBS Lett. 580: 1042-1048 https://doi.org/10.1016/j.febslet.2005.11.033
  25. Rodriguez, A. M., C. Olano, C. Vilches, C. Mendez, and J. A. Salas. 1993. Streptomyces antibioticus contains at least three oleandomycin-resistance determinants, one of which shows similarity with proteins of the ABC-transporter superfamily. Mol. Microbiol. 8: 571-582 https://doi.org/10.1111/j.1365-2958.1993.tb01601.x
  26. Ross, J. I., E. A. Eady, J. H. Cove, W. J. Cunliffe, S. Baumberg, and J. C. Wootton. 1990. Inducible erythromycin resistance in Staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol. Microbiol. 4: 1207-1214 https://doi.org/10.1111/j.1365-2958.1990.tb00696.x
  27. Rosteck, P. R. Jr., P. A. Reynolds, and C. L. Hershberger. 1991. Homology between proteins controlling Streptomyces fradiae tylosin resistance and ATP-binding transport. Gene 102: 27-32 https://doi.org/10.1016/0378-1119(91)90533-H
  28. Schmees, G., A. Stein, S. Hunke, H. Landmesser, and E. Schneider. 1999. Functional consequences of mutations in the conserved 'signature sequence' of the ATP-binding-cassette protein MalK. Eur. J. Biochem. 266: 420-430 https://doi.org/10.1046/j.1432-1327.1999.00871.x
  29. Schoner, B., M. Geistlich, P. R. Jr. Rosteck, R. N. Rao, E. Seno, P. A. Reynolds, K. Cox, S. Burgett, and C. L. Hershberger. 1992. Sequence similarity between macrolideresistance determinants and ATP-binding transport proteins. Gene 115: 93-96 https://doi.org/10.1016/0378-1119(92)90545-Z
  30. Widdick, D. A., H. M. Dodd, P. Barraille, J. White, T. H. Stein, K. F. Chater, M. J. Gasson, and M. J. Bibb. 2003. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus DSM 40005. Proc. Natl. Acad. Sci. USA 100: 4316-4321