Functions of the C-Terminal Region of Chitinase ChiCW from Bacillus cereus 28-9 in Substrate-Binding and Hydrolysis of Chitin

  • Huang, Chien-Jui (Department of Plant Pathology and Microbiology, National Taiwan University) ;
  • Chen, Chao-Ying (Department of Plant Pathology and Microbiology, National Taiwan University)
  • Published : 2006.12.30

Abstract

In order to investigate the functions of the C-terminal region of chitinase ChiCW of Bacillus cereus 28-9, a C-terminal truncated enzyme, ChiCW$\Delta$FC, was expressed in Escherichia coli and purified to homogeneity for biochemical characterization. Compared with ChiCW, ChiCW$\Delta$FC exhibited higher chitinase activity at high temperature and pH, but expressed lower hydrolytic and binding activities toward insoluble substrates. In addition, kinetic properties indicated that ChiCW$\Delta$MC hydrolyzed oligomeric and polymeric substrates less efficiently than ChiCW. These results suggest that the C-terminal region of ChiCW plays important roles in substrate binding and hydrolysis of chitin. In addition, the biological meaning of C-terminal proteolytic modification of ChiCW is discussed.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Cohen-Kupiec, R. and I. Chet. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9: 270-277 https://doi.org/10.1016/S0958-1669(98)80058-X
  3. Felse, P. A. and T. Panda. 1999. Regulation and cloning of microbial chitinase genes. Appl. Microbiol. Biotechnol. 51: 141-151 https://doi.org/10.1007/s002530051374
  4. Flach, J., P. E. Pilet, and P. Jolles. 1992. What's new in chitinase research? Experientia 48: 701-716 https://doi.org/10.1007/BF02124285
  5. Graham, L. S. and M. B. Sticklen. 1994. Plant chitinases. Can. J. Bot. 72: 1057-1083 https://doi.org/10.1139/b94-132
  6. Huang, C. J. and C. Y. Chen. 2004. Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus 28-9. Ann. Microbiol. 54: 289-297
  7. Huang, C. J. and C. Y. Chen. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophys. Res. Commun. 327: 8-17 https://doi.org/10.1016/j.bbrc.2004.11.140
  8. Huang, C. J., T. K. Wang, S. C. Chung, and C. Y. Chen. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88 https://doi.org/10.5483/BMBRep.2005.38.1.082
  9. Imoto, T. and K. Yogishita. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154- 1156 https://doi.org/10.1271/bbb1961.35.1154
  10. Liu, Y. H. 2004. Selection of rhizobacteria from Lilium formosanum and the application for the control of Botrytis leaf blight. Master Thesis. National Taiwan University
  11. Mabuchi, N., I. Hashizume and Y. Araki. 2000. Characterization of chitinases excreted by Bacillus cereus CH. Can. J. Microbiol. 46: 370-375 https://doi.org/10.1139/cjm-46-4-370
  12. Manoil, C. and J. Beckwith. 1986. A genetic approach to analyzing membrane protein topology. Science 233: 1403- 1408 https://doi.org/10.1126/science.3529391
  13. Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1997. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314 https://doi.org/10.1128/jb.179.23.7306-7314.1997
  14. Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  15. Sietsma, J. H. and J. G. H. Wessels. 1979. Evidence for covalent linkages between chitin and ${\beta}$-glucan in a fungal cell wall. J. Gen. Microbiol. 114: 99-108 https://doi.org/10.1099/00221287-114-1-99
  16. Takaya, N., D. Yamazaki, H. Horiuchi, A. Ohta, and M. Takagi. 1998. Intracellular chitinase gene from Rhizopus oligosporus: Molecular cloning and characterization. Microbiology 144: 2647-2654 https://doi.org/10.1099/00221287-144-9-2647
  17. Tantimavanich, S., S. Pantuwatana, A. Bhumiratana, and W. Panbangred. 1998. Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1. J. Ferment. Bioeng. 85: 259-265 https://doi.org/10.1016/S0922-338X(97)85672-3
  18. Thamthiankul, S., S. Suan-Ngay, S. Tantimavanich, and W. Panbangred. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401 https://doi.org/10.1007/s002530100630
  19. Trudel, J. and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366 https://doi.org/10.1016/0003-2697(89)90653-2
  20. Wang, F. P., Q. Li, Y. Zhou, M. G. Li, and X. Xiao. 2003. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53: 908-916 https://doi.org/10.1002/prot.10501
  21. Watanabe, T., Y. Ito, T. Yamada, M. Hashimoto, S. Sekine, and H. Tanaka. 1994 The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472 https://doi.org/10.1128/jb.176.15.4465-4472.1994
  22. Watanabe, T., W. Oyanagi, K. Suzuki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017-4022 https://doi.org/10.1128/jb.172.7.4017-4022.1990