Correlation of Simrad EM950(95kHz) Multibeam Backscatter Strength with Surficial Sediment Properties in the Sand Ridge of the Eastern Yellow Sea

황해 동부 사퇴분포지역의 표층퇴적물 특성과 Simrad EM950(95 kHz)멀티빔 후방산란 음압간 상관관계

  • Kong, Gee-Soo (Petroleum & Marine Resources Research division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Seong-Pil (Petroleum & Marine Resources Research division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Yo-Seop (UST21) ;
  • Min, Gun-Hong (Petroleum & Marine Resources Research division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Ji-Uk (Korea Water Resources Corporation (KWATER)) ;
  • Park, Soo-Chul (Department of Oceanography Chungnam National University)
  • 공기수 (한국지질자원연구원 석유해저자원연구부) ;
  • 김성필 (한국지질자원연구원 석유해저자원연구부) ;
  • 박요섭 ;
  • 민건홍 (한국지질자원연구원 석유해저자원연구부) ;
  • 김지욱 (한국수자원공사) ;
  • 박수철 (충남대학교 해양학과)
  • Published : 2006.12.30

Abstract

Simrad EM950 multibeam data and surficial sediment grab samples were acquired to correlate backscatter strength with surficial sediment properties in the eastern Yellow Sea which tidal sand ridges are dominantly developed. The study area is divided into the western sand ridge zone characterized by well sorted, fine sandy sediment, and the eastern non-sand ridge zone characterized by poorly sorted, medium sand with some gravels and shell fragments. In spite of minor difference in grain size between two zones, the variations of backscatter strength between two zones are distinct. Multibeam backscatter strength of study area shows good correlation with the grain size of surface sediment as well as the carbonate contents. High occurrence of carbonate shell fragments can increase grain size and bottom roughness. The dominance of higher backscatter strength in the eastern non-sand ridge zone may reflect the effects of coarse grain size and high shell fragments contents.

표층퇴적물의 특성과 멀티빔 후방산란 음압의 상관관계를 알아보기 위하여 사퇴가 발달되어 있는 황해 동부해역에서 Simrad EM950 멀티빔 수심기와 그랩을 이용하여 후방산란 음압 자료와 표층퇴적물 시료를 취득하였다. 연구지역은 분급이 양호한 세립사로 덮여있는 서쪽 사퇴 지역과 분급이 불량하고, 자갈과 패각편을 포함하는 중사가 우세하게 덮여 있는 동쪽의 사퇴가 없는 지역으로 나뉜다. 두 지역의 입도차이는 두드러지지 않으나, 후방산란 음압의 변화는 뚜렷한 차이를 보인다. 연구지역의 멀티빔 후방산란 음압은 표층 퇴적물의 입도와 높은 상관관계를 보일 뿐만 아니라 탄산염 함량과도 깊은 관계를 갖는 것으로 나타났다. 상대적으로 높은 탄산염 패각편의 함량은 해저면의 거칠기와 입도의 증가를 야기 시킨다. 동쪽의 사퇴가 없는 지역에서 높게 나타나는 후방산란 음압 값은 조립한 입도와 상대적으로 높은 탄산염 패각편 함량의 영향을 반영하는 것으로 여겨진다.

Keywords

References

  1. 한국지질자원연구원(2005) 골재자원 정밀조사 보고서. p. 98-99
  2. 박요섭(2004) 멀티빔음향소해탐사시스템 자료의 오차 분석 및 처리기술 연구. 박사학위논문, 인하대학교. p. 20-35
  3. Bell, J.M., Chantler, M.J. and Wittig, T. (1999) Sidescan sonar: a directional filter of seabed testure? IEEE Proc., Radar Sonar Navig, v. 146, p. 65-72
  4. Blondel., P. and Murton, B.J. (1997) Handbook of seafloor sonar imagery. Praxis-Wiley and Sons, West Sussex, England, p. 314
  5. Briggs, K.B., Williams, K.L., Jackson, D.R., Jones, C.D., Ivakin, A.N. and Orsi, T.H. (2002) Fine-scale sedimentary structure: Implications for acoustic remote sensing, Marine Geology, v. 182, p. 141-159 https://doi.org/10.1016/S0025-3227(01)00232-8
  6. Buchanan, L. (2005) Surveying in Fluid Mud. Hydro International, vol. 9, no. 6, p. 27
  7. Chotiros, N.P. and Boehme, H. (1986) High-frequency environmental acoustics bottom backscattering analysis. Applied Research Laboratories, University of Texas at Austin ARL-TR-86-27
  8. Clarke, J.E.H., Danforth, B.W. and Valentine, P. (1997) Areal seabed classification using backscatter angular response at 95 kHz. NATO SACLANT Undersea research centre, p. 1-8
  9. Collier, J.S. and Brown, C,J. (2005) Correlation of sidescan backscatter with grain size distribuion of surficial seabed sediments. Marine Geology, v. 214, p. 431-449 https://doi.org/10.1016/j.margeo.2004.11.011
  10. Cutter, Jr., G.R., Rzhanov, Y. and Mayer, L.A. (2003) Automated segmentation of seafloor bathymetry from multibeam echosounder data using local Fourier histogram textures features, J. Experim. Mar. Bio. Ecol., v. 285-286, p. 355-370
  11. Davis, K.S., Slowey, N.C., Stender, I.H., Fiedler, H., Bryant, W.R. and Fechner, G. (1996) Acoustic backscatter and sediment textural properties of inner shelf sands, northeastern Gulf of Mexico. Geo-Marine Letters, v. 16, p. 273-278 https://doi.org/10.1007/BF01204520
  12. Edwards, B.D., Dartnell, P. and Chezar, H. (2003) Characterizing benthic substrates of Santa Monica Bay with seafloor photography and multibeam sonar imagery. Marine Environmental Research, v. 56, p. 47-66 https://doi.org/10.1016/S0141-1136(02)00324-0
  13. Folk, R.L., Andrews, P.B. and Lewis, D.W. (1970) Detrital sedimentary rock classification and nomenclature for use in New Zealand. J. of Geology and Geophysics, v. 13, p. 937-968 https://doi.org/10.1080/00288306.1970.10418211
  14. Fonseca, L., Mayer, L., Orange, D. and Driscoll, N. (2002) The high-frequency backscattering angular response of gassy sediments: model/data comparison from the Eel River Margin, California. J. of Acoustical Society of America, v. 111, p. 2621-2631 https://doi.org/10.1121/1.1471911
  15. Gardner, J.V., Field, M.E. and Lee, H. (1991) Ground-truthing 6.5 kHz side scan sonographs: what are we really imaging? J. of Geophysics Research, v. 96, p. 5955-5974 https://doi.org/10.1029/90JB02730
  16. Goff, J.A., Olson, H.C. and Duncan, C.S. (2000) Correlation of sidescan backscatter intensity with grainsize distribution of shelf sediments, New Jersey margin. Geo-Marine Letters, v. 20, p. 43-49 https://doi.org/10.1007/s003670000032
  17. Gonidec, Y.L., Lamarche, G. and Wright, I.C. (2003). Inhomogeneous substrate analysis using EM300 backscatter imagery. Marine Geophysical Research, v. 24, p. 311-327 https://doi.org/10.1007/s11001-004-1945-9
  18. Hammerstad, E. (2000) Simrad EM technical note. p. 1-3
  19. Jackson, D.R., Baird, A.M., Crisp, J.J. and Thomson, P.A.G. (1986) High-frequency bottom backscatter measurements in shallow water. J. of Acoust. Soc. Am., v. 80 p. 1188-1199 https://doi.org/10.1121/1.393809
  20. Jackson, D.R and Briggs, K.B. (1992) High-frequency bottom backscattering: Roughness versus sediment volume scattering.J. of Acoustical Society of America, v. 92(2), p. 962-977 https://doi.org/10.1121/1.403966
  21. Jung, W.Y., Suk, B.C., Min, G.H. and Lee, Y.K. (1998) Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Marine Geology, v. 151, p. 73-88 https://doi.org/10.1016/S0025-3227(98)00058-9
  22. Keeton, J.A. and Searle, R.C. (1996) Analysis of Simrad EM12 Multibeam bathymetry and Acoustic Backscatter Data for Seafloor Mapping, Exemplified at the Mid-Atlantic Ridge at $45^\circ{N}$ Marine Geophysical Researches, v. 18, p. 663-688 https://doi.org/10.1007/BF00313880
  23. Kenyon, N.H., Belderson, RH., Stride, A.H. and Johnson, M.A. (1981) Offshore tidal sand banks as indicators of net sand transport and as potential deposits. In: Nio, S.D., Shuttenhelm, R.T.E., van Weering, T.C.E., (Eds.), Holocene Marine Sedimentation in the North Sea Basin. Int Assoc. Sedimentol., Spec. Publ. v. 5, p. 257-268
  24. Knebel, H.J., Signell, R.P., Rendigs, R., Poppe, L.J. and List, J.H. (1999) Seafloor environments in the Long Isand Sound estuarine system. Marine Geology, v. 155, p. 277-305 https://doi.org/10.1016/S0025-3227(98)00129-7
  25. Manik, H.M., Furusawa, M. and Amakasu, K. (2006) Measurement of sea bottom surface backscattering strength by quantitative echo sounder. Fisheries Science, v. 72 p. 503-512 https://doi.org/10.1111/j.1444-2906.2006.01178.x
  26. Mayer, L.A. (2000) Oceanographic and seabed geology concept, Lecture 3, Y2K coastal multibeam sonar training course, Burlington, Ontario. p. 20-24
  27. Mitchell, N.C. (1993) A model for attenuation of back- scatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J. of Geophysics Research, v. 98(B12), p. 22477-22493 https://doi.org/10.1029/93JB02217
  28. Park, S.C., Lee, B.H., Han, H.S., Yoo, D.G. and Lee, C.W (2006) Late Quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea. J. of Sedimentary Research, v. 76, p. 0-0 (in press)
  29. Ryan, W.B.F and Flood, R.D. (1996) Side-looking sonar backscatter response at dual frequencies. Marine Geophysics Research, v. 18, p. 689-705 https://doi.org/10.1007/BF00313881
  30. Simrad (1998) Instruction manual of Simrad Triton seabed classification
  31. Stanic S, Briggs, K.B., Fleischer, P., Ray, R.I. and Sawyer, W.B. (1988) Shallow-water high-frequency bottom scattering off Panama City, Florida. J. of Acoustical Society of America, v. 83, p. 2134-2144 https://doi.org/10.1121/1.396341
  32. Stanton, T.K. (1984) Sonar estimates of seafloor microroughness. J. of Acoustical Society of America, v. 75, p. 809-818 https://doi.org/10.1121/1.390590
  33. Sternberg, R.W, Larsen, L.H. and Miao, Y.T. (1985) Tidally driven sediment transport on the East China Sea continental shelf. Continental Shelf Research, v. 4, p. 105-120 https://doi.org/10.1016/0278-4343(85)90024-X
  34. Tang, Q., Zhou, X., Liu, Z. and Du, D. (2005) Processing multibeam backscatter data. Marine Geodesy, v. 28, p. 251-258 https://doi.org/10.1080/01490410500204595
  35. Urgeles, R, Locat, J.. Schmitt, T. and Clarke, J.E.H. (2002) The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: implications for sources of spatial and temporal backscatter variations. Marine Geology, v. 184, p. 41-60 https://doi.org/10.1016/S0025-3227(01)00303-6
  36. Urick, R,J. (1967) Principles of underwater sound for engineers. McGaw-Hill Book
  37. Urick, R.J. (1983) Principles of underwater sound. McGraw-Hill, p. 422
  38. Wille, P.C. (2005) Sound images of the ocean in research and monitoring. Springer-Verlay Berlin Heidelberg, p. 446
  39. Williams, K.L., Jackson, D.R, Thorsos, E.I., Tang, D. and Briggs, K.B. (2002) Acoustic backscattering experiments in a well characterized sand sediment: datal model comparisons using sediment fluid and Biot models. IEEE J. Oceanic Eng., v. 27, p. 376-387 https://doi.org/10.1109/JOE.2002.1040925