DOI QR코드

DOI QR Code

경험적 확률분포와 만족도에 기반한 정량적 신뢰 모델

A Quantitative Trust Model based on Empirical Outcome Distributions and Satisfaction Degree

  • 김학준 (호원대학교 정보통신학과) ;
  • 손봉기 (서원대학교 컴퓨터정보통신공학부) ;
  • 이승주 (청주대학교 바이오정보통계학과)
  • 발행 : 2006.12.31

초록

현재 인터넷 환경에서 사용자는 서로 잘 모르는 사람이나 시스템과 상호거래를 하게 되는데 이 경우 서로 다른 개체에 대한 신뢰 정보가 부족하기 때문에 상호 거래의 위험을 감수할 수밖에 없다. 따라서 이러한 불확실성과 위험을 감소시킬 수 있는 방안으로 상대 개체와 직접 경험한 신뢰정보와 추천자에 의한 명성정보를 계산하여 이를 활용하는 방법들이 대두되고 있다. 이 논문에서는 개체에 대한 신뢰를 계산하기 위해 상호거래 결과를 누적한 경험적 확률분포와 여러 가지의 평가 기준에 의한 만족도를 계산하고, 이를 다른 개체들로부터의 추천정보와 결합하여 계산하는 신뢰 모델을 제안한다. 제안한 모델에서는 개체의 신뢰도를 개체가 주어진 상황에서 만족스러운 결과를 낼 기대값으로 정의하고, 다른 개체와 상호작용이 일어날 때마다 각 평가 기준에 따른 평가결과가 얻어진다고 전제한다. 신뢰 정보가 요구될 때 우선 경험적 확률분포와 개체의 평가결과에 대한 선호도를 고려하여 각 평가 기준에 대한 만족도를 계산하고, 계산된 만족도 값들은 각 평가기준의 중요도를 반영하여 하나의 신뢰값으로 결합되며, 이때 추천 정보도 신뢰값에 함께 결합되는 모델이다. 이 논문에서는 제안한 모델을 이용해 전자상거래에 적용한 실험 결과를 보여 주고 있다.

In the Internet environment many interactions between many users and unknown users take place and it is usually rare to have the trust information about others. Due to the lack of trust information, entities have to take some risks in transactions with others. In this perspective, it is crucial for the entities to be equipped with functionality to accumulate and manage the trust information on other entities in order to reduce risks and uncertainty in their transactions. This paper is concerned with a quantitative computational trust model which takes into account multiple evaluation criteria and uses the recommendation from others in order to get the trust for an entity. In the proposed trust model, the trust for an entity is defined as the expectation for the entity to yield satisfactory outcomes in the given situation. Once an interaction has been made with an entity, it is assumed that outcomes are observed with respect to evaluation criteria. When the trust information is needed, the satisfaction degree, which is the probability to generate satisfactory outcomes for each evaluation criterion, is computed based on the empirical outcome outcome distributions and the entity's preference degrees on the outcomes. Then, the satisfaction degrees for evaluation criteria are aggregated into a trust value. At that time, the reputation information is also incorporated into the trust value. This paper also shows that the model could help the entities effectively choose other entities for transactions with some experiments in e-commerce.

키워드

참고문헌

  1. P. Dasgupta, 'Trust as a Commodity,' In D. Gambetta, editor, Trust:Making and Breaking Cooperative Relations, pp. 49-72, Blackwell, 1998
  2. L. Rasmusson, S. Jansson, 'Simmulated Social control for secure Internet Commerce,' In Proceedings of New Security Paradigms Workshop, Lake, Arrowhead, 1996 https://doi.org/10.1145/304851.304857
  3. A. Abdul-Rahman, S. Hailes, 'Supporting Trust in Virtual Communities,' In Proceedings of the Hawaii International Conference on System Sciences, Hawaii, 2000
  4. F. Azzedin, M. Maheswaran, 'Trust Modeling for Peer-to-Peer based Computing Systems,' In Proceedings of the International Parallel and Distributed Processing Symposium, 2003 https://doi.org/10.1109/IPDPS.2003.1213203
  5. D. Gambetta, 'Can We Trust?,' In D. Gambetta, editor, Trust:Making and Breaking Cooperative Relations, Blackwell. 1990
  6. D. H. Mcknight, N. L. Chervany, 'The Meanings pf Trust,' Technical Report, Carlson School of Management, University of Minnesota, 1996
  7. G. Derbas, A. Kayssi, H. artial, A. Cherhab, 'TRUMMAR A Trust Model for Mobile Agent Systems Based on Reputation,' In Proceedings of ICPS2004, IEEE, 2004 https://doi.org/10.1109/PERSER.2004.1356779
  8. J. Shi, G. Bochmann, C. Adams, 'A Trust Model with Statistical Foundation,' In the 18th IFIP World Computer Congress, Toulouse, France, 2004
  9. Y. Wang, J. Vassileva, 'Baysian Network Trust Model in Peer-to-Peer Network,' In the Proceedings of WI'03. IEEE, 2003 https://doi.org/10.1109/WI.2003.1241218
  10. eBay Site, http://www.cbay.com, Wrold Wide Web
  11. Amazon Site, http://www.amazon.com, World Wide Web
  12. R. Falcone, O.Shehory, 'Trust Delegation and Autonomy: Foundation for Virtual Societies,' AAMAS tutorial, July 2002
  13. J. Carter, E. Bitting and A. Ghorbani, 'Reputation Formalization for An Information-Sharing Multi-Agent System,' Computational Intelligence, November 2002 https://doi.org/10.1111/1467-8640.t01-1-00201
  14. S. Buchegger, J.Y Le Boudec, 'The Effect Rumor Spreading in Reputation Systems for Mobile Ad-hoc Networks,' Workshop on Modeling and Optimization in Mobile Ad-hoc and Wireless, November 2003
  15. M. Montaner, B. Lopez, J.L. Rosa, 'Opinion-Based Filtering Through Trust,' In Proceedings of the 6th International Workshop on Cooperative Information Agents V, 2002