DOI QR코드

DOI QR Code

Magnetic Tunnel Junctions with Magnesium Oxide Barriers

  • Nagahama Taro (Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology) ;
  • Moodera Jagadeesh S. (Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology)
  • 발행 : 2006.12.31

초록

Spin dependent tunneling has enormously activated the field of magnetism in general, and in particular spin transport studies, in the past ten years. Thousands of articles related to the subject have appeared with many fundamental results. Importantly, there is great interest in their potential for application. There was another surge of activity in this field since the past five years - created by the theoretical prediction of a large tunnel magnetoresistance that arises due to band symmetry matched coherent tunneling in epitaxial magnetic tunnel junctions with (001) MgO barrier and experimentally well demonstrated. This further development in the field has boosted the excitement in both fundamental science as well as the possibility of application in such as magnetic random access memory, ultra sensitive read heads, biosensors and spin torque diodes. This review is a brief coverage of the field highlighting the literature that deals with magnetic tunnel junctions having epitaxial MgO tunnel barriers.

키워드

참고문헌

  1. J. S. Moodera and R. H. Meservey, in 'Magnetoelectronics', Chap. 3, Edited by M. Johnson (Elsevier Academic Press, Boston, 2004)
  2. B. Dieny, Chap. 2; J. Daughton, Chap. 4; J. Akerman et al., Chap. 5 and M. Johnson, Chap. 6 in 'Magneoelectronics', Edited by M. Johnson (Elsevier Academic Press, Boston, 2004)
  3. P. P. Freitas, 'Magneoelectronics', Chap. 7, Edited by M. Johnson (Elsevier Academic Press, Boston, 2004)
  4. R. H. Meservey and P. M. Tedrow, Phys. Repts. 238, 173 (1994) https://doi.org/10.1016/0370-1573(94)90105-8
  5. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995) https://doi.org/10.1103/PhysRevLett.74.3273
  6. T. Miyazaki and N. Tezuka, J. Mag. Mag. Mater. 139, L231 (1995) https://doi.org/10.1016/0304-8853(95)90001-2
  7. J. M. de Teresa, A. Barthélémy, A. Fert, J. P. Contour, R. Lyonnet, F. Montaigne, P. Seneor, and A. Vaures, Phys. Rev. Lett. 82, 4288 (1999) https://doi.org/10.1103/PhysRevLett.82.4288
  8. Z. Li, C. de Groot, and J. S. Moodera, Appl. Phys. Lett. 77, 3630 (2000) https://doi.org/10.1063/1.1329169
  9. D. Wang, C. Nordman, J. M. Daughton, Z. Qian, and J. Fink, IEEE Trans. Magn. 40, 2269-2271 (2004) https://doi.org/10.1109/TMAG.2004.830219
  10. J.-H. Lee, K.-I. Jun, and J. S. Moodera, unpublished TMR data at LHe temperatures (2004)
  11. Ph. Mavropoulos, N. Papanikolaou, and P. H. Dederichs, Phys. Rev. Lett. 85, 1088 (2000) https://doi.org/10.1103/PhysRevLett.85.1088
  12. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001) https://doi.org/10.1103/PhysRevB.63.054416
  13. J. Mathon and A. Umerski, Phys. Rev. B 63, 220403R (2001) https://doi.org/10.1103/PhysRevB.63.220403
  14. X.-G. Zhang and W. H. Butler, Phys. Rev. B 70, 172407 (2004) https://doi.org/10.1103/PhysRevB.70.172407
  15. B. D. Yu and J.-S. Kim, Phys. Rev. B 73, 125408 (2006) https://doi.org/10.1103/PhysRevB.73.125408
  16. C. Heiliger, P. Zahn, B. Yu Yavorsky, and I. Mertig, Phys. Rev. B 72, 180406 (2005) https://doi.org/10.1103/PhysRevB.72.180406
  17. J. S. Moodera and L. R. Kinder, J. Appl. Phys. 79, 4724 (1996) https://doi.org/10.1063/1.361653
  18. M. Bowen, V. Cros, F. Petroff, A. Fert, C. Martinez Boubeta, J. L. Costa-Kramer, J. V. Anguita, A. Cebollada, F. Briones, J. M. de Teresa, L. Morellon, M. R. Ibarra, F. Guell, F. Peiro, and A. Cornet, Appl. Phys. Lett. 79, 1655 (2001) https://doi.org/10.1063/1.1404125
  19. J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, and A. Schuhl, Appl. Phys. Lett. 82, 4507 (2003) https://doi.org/10.1063/1.1586785
  20. H. I. Meyerheim, R. Popescu, N. Jedrecy, M. Vedpathak, M. Sauvage-Simkim, R. pinchaux, B. Heinrich, and J. Kirschner, Phys. Rev. B 65, 144433 (2002) https://doi.org/10.1103/PhysRevB.65.144433
  21. W. Wulfhekel, M. Klaua, D. Ullmann, F. Zavaliche, and J. Kirschner R. Urban, T. Monchesky, and B. Heinrich, Appl. Phys. Lett. 78, 509-511 (2001) https://doi.org/10.1063/1.1342778
  22. M. Klaua, D. Ullmann, J. Barthel, W. Wulfhekel, J. Kirschner, R. Urban, T. L. Monchesky, A. Enders, J. F. Cochran, and B. Heinrich, Phys. Rev. B 64, 134411 (2001) https://doi.org/10.1103/PhysRevB.64.134411
  23. S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, Jpn J. Appl. Phys. 43, L588-L590 (2004) https://doi.org/10.1143/JJAP.43.L588
  24. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004) https://doi.org/10.1038/nmat1257
  25. S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang; Nature Mater. 3, 862 (2004) https://doi.org/10.1038/nmat1256
  26. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 89, 042505 (2006) https://doi.org/10.1063/1.2236268
  27. D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maekawa, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005) https://doi.org/10.1063/1.1871344
  28. S. Ikeda, J. Hayakawa, Y. M. Lee, T. Tanikawa, F. Matsukura, and H. Ohno, J. Appl. Phys. 99, 08A907 (2006) https://doi.org/10.1063/1.2176588
  29. J. Hayakawa, S. Ikeda, Y. M. Lee, F. Matsukura, and H. Ohno, Cond. Mat_0610526
  30. J. Y. Bae, W. C. Lim, H. J. Kim, D. J. Kim, K. W. Kim, T. W. Kim, and T. D. Lee, J. of Magnetics 11, 25-29 (2006) https://doi.org/10.4283/JMAG.2006.11.1.025
  31. Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. 89, 042506 (2006) https://doi.org/10.1063/1.2234720
  32. T. Marukama, T. Ishikawa, K.-I. Matsuda, T. Uemura, and M. Yamamoto, J. Appl. Phys. 99, 08A904 (2006) https://doi.org/10.1063/1.2167063
  33. T. Marukama, T. Ishikawa, K.-I. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. 88, 262503 (2006) https://doi.org/10.1063/1.2217166
  34. P. G. Mather, J. C. Read, and R. A. Buhrman, Phys. Rev. B 73, 205412 (2006) https://doi.org/10.1103/PhysRevB.73.205412
  35. Y. Ando, T. Miyakoshi, M. Oogane, T. Miyazaki, H. Kubota, K. Ando, and S. Yuasa, Appl. Phys. Lett. 87, 142502 (2005) https://doi.org/10.1063/1.2077861
  36. C. Tiusan, J. Faure-Vincent, C. Bellouard, M. Hehn, E. Jouguelet, and A. Schuhl, Phys. Rev. Lett. 93, 106602 (2004) https://doi.org/10.1103/PhysRevLett.93.106602
  37. T. Nozaki, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 96, 027208 (2006) https://doi.org/10.1103/PhysRevLett.96.027208
  38. Z. Diao, D. Apalkov, M. Pakala, Y. Ding, A. Panchula, and Y. Huai, Appl. Phys. Lett. 87, 232502 (2005) https://doi.org/10.1063/1.2139849
  39. G. D. Fuchs, J. A. Katine, S. I. Kiselev, D. Mauri, K. S. Wooley, D. C. Ralph, and R. A. Buhrman, Phys. Rev. Lett. 96, 186603 (2006) https://doi.org/10.1103/PhysRevLett.96.186603
  40. A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature 438 339 (2005) https://doi.org/10.1038/nature04207

피인용 문헌

  1. Exchange bias field and coercivity of [NiFe/NiFeCuMo/NiFe]/FeMn multilayers vol.62, pp.12, 2013, https://doi.org/10.3938/jkps.62.1954
  2. Effect of capping layer on the crystallization of amorphous CoFeB vol.204, pp.12, 2007, https://doi.org/10.1002/pssa.200777336
  3. manganese oxide layer vol.4, pp.12, 2007, https://doi.org/10.1002/pssc.200777240
  4. annealing on the nanoscale topographical/electrical properties of the tunnel barrier in sputtered epitaxial Fe/MgO/Fe multilayers vol.43, pp.21, 2010, https://doi.org/10.1088/0022-3727/43/21/215003