DOI QR코드

DOI QR Code

용융아연 도금욕중 Al농도 센서의 기준전극에 대한 연구

A Study on the Reference Electrode for Al Concentration Sensor in Zinc Galvanizing Melt

  • 정우광 (국민대학교 공과대학 신소재공학부) ;
  • 정세혁 (국민대학교 대학원 신소재공학과)
  • Jung, W.G. (School of Advanced Materials Engineering, Kookmin University) ;
  • Jung, S.H. (Department of Advanced Materials Engineering, Graduate School of Kookmin University)
  • 발행 : 2006.02.27

초록

In order to get basic information on the reference electrode material for the long life Al concentration sensor in zinc galvanizing melt, the workability and stability of fluorine potential cell with $CaF_2$ single crystal electrolyte were examined carefully at constant temperature for six kinds of reference materials (Zn, Sn, Cd, Bi, Pb, Al-Sn alloy + fluorides). Good workability and stability of the sensor were found in sensor with $Bi+BiF_3$ reference electrode. The Al sensor with $Bi+BiF_3$ reference electrode was assembled and was tested in Zn-Al melt with different Al concentration. The EMF was changed rapidly with the change of Al concentration and was stabilized in a short time. Thus the response of EMF was satisfactory for $CaF_2$ sensor. The correlationship between EMF from the sensor and logarithm of Al concentration has been derived from the least square regression method. E/mV=57.515log[wt% Al]+1883.3 R=0.9717 ($0.013{\leq}[wt% Al]{\leq}0.984$) The EMF from Al sensor was increased linearly against logarithm of [wt% Al]. The fluorine potential of Zn-Al melt was also calculated to be in the range of $10^{-60}{\sim}10^{-61}$ Pa for the present experiemental condition.

키워드

참고문헌

  1. H. Yamaguchi and T. Hisarnatu, Tetsu-to-Hagane, 59, 131 ?(1973) https://doi.org/10.2355/tetsutohagane1955.59.1_131
  2. T. Ikeda, H. Okada, Y. Suemune and K. Kawaguchi, CAMP-ISIJ, 4,663 (1991)
  3. T. Nakamori, T. Toki and K. Abe, CAMP-ISIJ, 3, 1567 (1990)
  4. K. Kiukkola and C. Wagner, J. Electrochem Soc., 104(6), 397 (1957) https://doi.org/10.1149/1.2428586
  5. B. C. H. Steele and C. B. Alcock, Trans. Met. Soc. AIME, 233, 1359 (1965)
  6. C. B. Alcock and Baozhen Li, Solid State Ionic. 39, 245 (1990) https://doi.org/10.1016/0167-2738(90)90403-E
  7. K. Goto, Tetsu-to-Hagane, 62, 1265 (1976) https://doi.org/10.2355/tetsutohagane1955.62.9_1265
  8. S. Yamaguchi, N. Fukatsu, H. Kimura, J. Ueda, Y. Iguchi and T. Ohashi, CAMP-ISIJ, 4,669 (1991)
  9. H. Kimura, J. Deda, M. Kawamura, S. Yamaguchi and N. Fukatsu, Materia Japan, 34, 492 (1995) https://doi.org/10.2320/materia.34.492
  10. H. Schmalzried, Z. Phys. Chem. N.F., 38, 870 (1963)
  11. I. Katayama, S. Matsushima and Z. Kozuka, Mat. Trans. JIM, 31(9), 789 (1990) https://doi.org/10.2320/matertrans1989.31.789
  12. I. Katayama, S. Matsushima and Z. Kozuka, Mat. Trans., JIM, 32(10),943 (1991) https://doi.org/10.2320/matertrans1989.32.943
  13. S. Matsubra, T. Tsutac, K. Nakamoto, I. Katayama, and T. Iida, Mat, Trans. JIM, 36(10), 1225 (1995)
  14. I. Katayama, A. Iseda, N. Kemori and Z. Kozuka, Mat. Trans. JIM, 23,556 (1982) https://doi.org/10.2320/matertrans1960.23.556
  15. I. Katayama and T. Iida, ISIJ International, 35(5),512 (1995)
  16. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagram, 2nd Ed., ASM International, Materials Park, OH, 215 (1990)
  17. I. Barin, Thermochemical Data of Pure Substance, VCH Verlags Gesel m.b.H., Weinheim (1989)