DOI QR코드

DOI QR Code

Wet-etch Characteristics of ZnO Using Acidic Solutions

산성용액을 이용한 아연산화물 반도체의 습식 식각 특성

  • Oh, Jung-Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Lee, Ji-Myon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 오정훈 (국립순천대학교 재료금속공학) ;
  • 이지면 (국립순천대학교 재료금속공학)
  • Published : 2006.01.27

Abstract

The characteristics of the wet-etching of ZnO thin films were investigated using hydrochloric and phosphoric acid solutions as etchants. The etch rate of ZnO films, using highly diluted hydrochloric acid solutions at a concentration of 0.25% in deionized water, was determined to be about 120 nm/min, and linearly increased with increasing the acid concentration, resulting in $1.17{\mu}m/min$ when a 2% HCl solution was used. The surface of ZnO etched by an HCl solution, observed by scanning electron microscopy, showed a rough morphology with a high density of hexagonal pyramids or cones with sidewall angles of about ${\sim}45^{\circ}C$. Moreover, the sidewall angles of the masked area were similar to those of the pyramids on the surface. In comparison, the surface of ZnO etched by a phosphoric acid had a smooth surface morphology. The origin of this difference is from the very initial stage of etching, indicating that the etch-mechanism is different for each solution. Furthermore, when $H_3PO_4$ was added to the HCl aqueous solution, the morphology of the etched surface was greatly enhanced and the sidewall angle was also increased to about $65^{\circ}C$.

Keywords

References

  1. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998) https://doi.org/10.1063/1.121620
  2. W. H. Yoon, J. M. Myoung, D. H. Lee, S. H. Bae, I. Yun and S. Y. Lee, Kor. J. Mater. Res., 11, 319 (2001)
  3. H. W. Suh, D. Byun and W. K. Choi, Kor. J. Mater. Res., 13, 347 (2003) https://doi.org/10.3740/MRSK.2003.13.6.347
  4. J. Lim, K. Shin and C. Lee, Kor. J. Mater. Res., 14, 363 (2004) https://doi.org/10.3740/MRSK.2004.14.5.363
  5. J. F. Wager, Science, 300, 1245, (2003) https://doi.org/10.1126/science.1085276
  6. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, Science, 300, 1269 (2003) https://doi.org/10.1126/science.1083212
  7. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000) https://doi.org/10.1103/PhysRevLett.85.1012
  8. M. J. Vellekoop, C. C. O. Visser, P. M. Sarro and A. Venema, Sensor. Actuat. A, 23, 1027 (1990) https://doi.org/10.1016/0924-4247(90)87083-U
  9. S. C. Chang, D. B. Hicks and R. C. O. Laugal, in Solit-State Sensor Actuator Workshop (New York, 1992) (IEEE, New Jersey, 1992), p. 41 https://doi.org/10.1109/SOLSEN.1992.228280
  10. J. Zhu, W. W. Emanetoglu, Y. Chen, B. V. Yakshinskiy and Y. Lu, J. Electron, Mater., 33, 556 (2004) https://doi.org/10.1007/s11664-004-0046-5
  11. A. N. Mariano and R. E. Hanneman, J. Appl. Phys., 34, 384 (1963) https://doi.org/10.1063/1.1702617
  12. J. M. Lee, K. K. Kim, S. J. Park and W. K. Choi, Appl. Phys, Lett., 78, 3842 (2001) https://doi.org/10.1063/1.1379061
  13. Y. Gao, T. Fuji, R. Sharma, K. Fujito, S. P. Denbarrs, S. Nakamura and E. L. Hu, Jpn. J. Appl. Phys., 43, L637, (2004) https://doi.org/10.1143/JJAP.43.L637
  14. S. S. Tan, M. Ye and A. G. Millins, Solid-State Electron., 38, (1995) https://doi.org/10.1016/0038-1101(94)E0072-M
  15. D. W. Shaw, J. Electrochem. Soc., 113, 958 (1966) https://doi.org/10.1149/1.2424166
  16. E. Harush, S. Brandon, J. Salzman and Y. Paz, Semicon. Sci. Technol, 17, 510 (2002) https://doi.org/10.1088/0268-1242/17/6/302