DOI QR코드

DOI QR Code

NONEXISTENCE OF SOME EXTREMAL SELF-DUAL CODES

  • Han, Sun-Ghyu (Mathematics Section College of Science Yonsei University) ;
  • Lee, June-Bok (Mathematics Section College of Science Yonsei University)
  • Published : 2006.11.01

Abstract

It is known that if C is an [24m + 2l, 12m + l, d] selfdual binary linear code with $0{\leq}l<11,\;then\;d{\leq}4m+4$. We present a sufficient condition for the nonexistence of extremal selfdual binary linear codes with d=4m+4,l=1,2,3,5. From the sufficient condition, we calculate m's which correspond to the nonexistence of some extremal self-dual binary linear codes. In particular, we prove that there are infinitely many such m's. We also give similar results for additive self-dual codes over GF(4) of length n=6m+1.

Keywords

References

  1. E. R. Berlekamp, F. J. MacWilliams, and N. J. A. Sloane, Gleason's theorem on self-dual codes, IEEE Trans. Inform. Theory, IT-18 (1972), 409-414
  2. A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 1369-1387 https://doi.org/10.1109/18.681315
  3. J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self -dual codes, IEEE Trans. Inform. Theory 36 (1990), no. 6, 1319-1333 https://doi.org/10.1109/18.59931
  4. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, New York: Springer-Verlag, 1988
  5. W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451-490 https://doi.org/10.1016/j.ffa.2005.05.012
  6. F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes, I., II., North-Holland, 1977
  7. F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, Good self dual codes exist, Discrete Math. 3 (1972), 153-162 https://doi.org/10.1016/0012-365X(72)90030-1
  8. E. M. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1998), no. 1, 134-139 https://doi.org/10.1109/18.651000
  9. E. M. Rains and N. J. A. Sloane, Self-dual codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998
  10. S. Zhang, On the nonexistence of extremal self-dual codes, Discrete Appl. Math. 91 (1999), no. 1-3, 277-286 https://doi.org/10.1016/S0166-218X(98)00131-0

Cited by

  1. New Binary Singly Even Self-Dual Codes vol.56, pp.4, 2010, https://doi.org/10.1109/TIT.2010.2040967
  2. Nonexistence of near-extremal formally self-dual even codes of length divisible by 8 vol.155, pp.8, 2007, https://doi.org/10.1016/j.dam.2006.11.004
  3. Upper Bounds for the Lengths of $s$-Extremal Codes Over $\BBF _{2}$, $\BBF _{4}$, and $\BBF _{2} + u\BBF _{2}$ vol.54, pp.1, 2008, https://doi.org/10.1109/TIT.2007.911251
  4. Singly Even Self-Dual Codes With Minimal Shadow vol.58, pp.6, 2012, https://doi.org/10.1109/TIT.2012.2183114
  5. Singly even self-dual codes of length 24k + 10 and minimum weight 4k + 2 pp.1936-2455, 2018, https://doi.org/10.1007/s12095-018-0303-8