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NONEXISTENCE OF SOME
EXTREMAL SELF-DUAL CODES

SuNGHYU HaN AND JUNE Bok LEE

ABSTRACT. It is known that if C is an [24m + 21,12m + [, d ] self-
dual binary linear code with 0 < [ < 11, then d < 4m + 4. We
present a sufficient condition for the nonexistence of extremal self-
dual binary linear codes with d = 4m + 4,1 = 1,2,3,5. From
the sufficient condition, we calculate m’s which correspond to the
nonexistence of some extremal self-dual binary linear codes. In
particular, we prove that there are infinitely many such m’s. We
also give similar results for additive self-dual codes over GF(4) of
length . = 6m + 1.

1. Introduction

We are mainly interested in binary linear codes and additive codes
over GF(4). First, we introduce binary linear codes. A binary linear
code C is a subspace of a vector space GF(2)™ and the vectors in C
are called codewords. The weight of a codeword u = (u1,us,...,u,) in
GF(2)" is the number of nonzero u;. The minimum distance of C is the
smallest nonzero weight of any codeword in C. If the dimension of C is
k and the minimum distance in C is d, we say C is an [n, k, d] code.

The scalar product in GF(2)™ is defined by

n
(u,0) = Y ujvj
j=1
where the sum is evaluated in GF'(2). The dual code of a binary linear
code C is defined by
Ct={veGF@2)": (v,c) =0forall ce C}.
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If C C Ct, we say C is self-orthogonal and if C = C+, we say C is
self-dual.

A binary code is even if all its codewords have even weight. Clearly
self-dual binary codes are even. In addition, some of these codes have all
codewords of weight divisible by 4. A self-dual code with all codewords
of weight divisible by 4 is called doubly-even or Type II; a self-dual code
with some codeword of weight not divisible by 4 is called singly-even or
Type 1. Type II codes exist only for lengths a multiple of 8 [7].

Bounds on the minimum distance of self-dual binary codes were given
in [8, 9]. -

THEOREM 1. Let C be an [n,n/2,d] self-dual binary code. Then d <
4[n/24] +4 if n # 22(mod 24). If n = 22(mod 24), then d < 4[n/24] + 6,
and if equality holds, C' can be obtained by shortening a Type II code
of length n+ 2. If 24|n and d = 4|{n/24] + 4, then C is Type II.

A code meeting the bound of Theorem 1, i.e., equality holds in the
bound, is called extremal. Extremal Type II codes do not exist for
lengths n > 3928 [10].

The proof of Theorem 1 when the code is Type I used the concept
of the shadow. In [3], the shadow code of a code was introduced. The
shadow code of a self-dual code C is defined as follows. Let C(©) be the
subset of C consisting of all codewords whose weights are multiple of 4,
and let C® = C\C©). The shadow code of C is defined by

s = S)
= {ueGF2)": (u,v) =0for all v € CO,
(u,v) = 1 for all v € C?}.

For the general definition of shadow code and related information is
presented in [3]. .

Next, we explain additive codes over GF(4). An additive code, C,
over GF'(4) of length n is an additive subgroup of GF(4)". The weight
of a vector u € GF(4)", the minimum distance of C, and codewords are
defined by the same way in the binary linear codes. C is a k-dimensional
GF(2)-subspace of GF(4)" and so has 2 codewords. It is denoted an
(n,2*) code, and if its minimum distance is d, the code is an (n, 2*, d)
code.

The trace map, Tr : GF(4) — GF(2), is defined by Tr(z) = = + z2.
The Hermitian trace inner product of two vectors over GF'(4) of length
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n, u = (u1,us,...,up) and v = (vy,ve,...,Vy), is given by

n n
Uk = ZTr(uiviz) = Z(uivf + u;2v;) (mod 2).
i=1 i=1
Note that u * v is also the number (modulo 2) of places where v and v
have different non-zero values. We define the dual of the code C with
respect to the Hermitian trace inner product,

Ct={ueGF@)":uxc=0forallce C}.

Self-orthogonal and self-dual are defined by the same way in the binary
linear codes. It has been shown that self-orthogonal additive codes over
GF(4) can be used to represent quantum error-correcting codes [2|. If C
is self-dual, then it must be an (n, 2") code. Self-dual additive codes over
GF(4) correspond to zero-dimensional quantum codes, which represent
single quanturn states. If the code has high minimum distance, the
corresponding quantum state is highly entangled.

We distinguish between two types of self-dual additive codes over
GF(4). A code is of Type II if all codewords have even weight, otherwise
it is of Type I. It can be shown that a Type II code must have even
length.

Bounds on the minimum distance of self-dual codes were given by
Rains and Sloane [8, 9].

THEOREM 2. Let C be an (n,2",d) additive self-dual code over
GF(4). IfC is Type I, then d < 2[n/6]+1 if n = 0(mod 6), d < 2[n/6]+3
if n = 5(mod 6), and d < 2[n/6] + 2 otherwise. If C is Type II, then
d <2[n/6]+ 2.

A code thas meets the appropriate bound is called extremal. It can
be shown that extremal Type IT codes must have a unique weight enu-
merator.

As in the case of binary codes, the proof of Theorem 2 used the
shadow codes. Let Cy be the subset of C consisting of all codewords
whose weights are multiple of 2. The shadow codes of an additive code
C over GF(4) is defined by

S=5(C)
={ueGF4)":uxv=0for all v € Cp,u*xv =1 for all v € C\Cp}.

In this paper, we will prove that some extremal self-dual codes do
not exist. First, in Section 2, we give a sufficient condition for the
nonexistence of extremal self-dual binary codes C[24m+2l,12m~+1,4m+
4] with [ = 1,2,3,5. The sufficient condition is used to calculate m’s
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which correspond to the nonexistence of some extremal self-dual binary
codes. In particular, we prove that there are infinitely many such m’s
for each [ = 1,2,3,5. In section 3, we give similar results for additive
self-dual codes over GF(4) of length n = 6m + 1.

2. Binary self-dual codes

The weight enumerator of a binary code is given by
n
Wolz,y) =Y Ay,
i=0

where there are A; codewords of weight ¢ in C. We are interested in only
Type I code. From now on C is assumed as a Type I code. By Gleason’s
theorem [1, 4, 6], we can write the weight enumerator of C:

[n/8]
(1) Welz,y) = Y | ci(@® + 9" 4 a2 (2a® — y*)%Y,

=0
for suitable constants ¢;. Using the shadow code theory [3], we can write
the weight enumerator of shadow code S(C),

[n/8]
(2) Ws(z,y) = Y (=1)2"2 Sy (ay)™/> 4 (2 — y*).
i=0
We rewrite (1), (2) as the following form
[n/2] ‘
We(l,y) = a;y”
7=0
[n/8] . '
= Y G+ (1 - )Y,
i=0
2[n/8] '
Ws(Ly) = > biy""
§=0
(/8]
— Z (_1)i2n/2—-6iciyn/2—4i(1 . y4)2i,
=0

where t = n/2 (mod 4). Note that ap = 1, and all a; and b; must
be nonnegative integers. One can write ¢; as a linear combination of
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the a; for 0 < j < i. Also one can write (~1)'2"/27%¢; as a linear
combination of b; for 0 < j < [n/8] —i. Note that the coefficients of
these linear combinations are all integers. As a result, ¢; and 2"/ 2-6i.,
are all integers for 0 < i < [n/8].

Define o;(n) to be the coefficient of ag in the expansion of ¢; in terms
of a; for 0 < j <i. For i >0,

az(n) = _% coeff. of yi_l in (1._+_ y)—(n/Z)—1+4i(1 o y)_% '

This comes from [8]. We are ready to prove the following theorem which
states the sufficient condition for the nonexistence of extremal self-dual
binary codes.

THEOREM 3. Let C be a [24m+21,12m+1,d] Type I binary self-dual
code. Let

el

k=1 k=1

(i) If 1 =1,2,3 and e < 3, then d < 4m + 4.
(ii) Ifl =5, m = even, and e < 1, then d < 4m + 4.

Proof. Let C be a [24m + 2[,12m + [,4m + 4]. Type I extremal
self-dual code. Since a; =0 for 1 <i < 2m +1,

Com+1 = a2m+1(24m + 2l)
__12m+1 om . —4m—1+3 —4m—2
= Gl [coeff. of ™ in (1 +y) (1-y9)
12m +1 om 5—1 2\ —dm—2
= - ff. of y*™ 1 1- m .
2m+1[coe of ™ in (14+y)°™*(1 —y°)

Suppose that [ = 1.

12m+1 . A
C2m+1 T m a1 [coeff. of ¥*™ in (14 y)*(1 —y?)~4m 2]
_ 2m+1
- 2m + 1
) 4 o0 .
. 4\ dm+1+47 .
X ff. of y*™ t 2
coeff. of y*" in (Z(Jy)(Z( j )?J )}
. =0 7=0
3) _ 12m+1 4(14m+1)( 5m
- 2m + 1 5m m—1/"
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(24m+2)/2—6(2m+1)

—Com+1 2
1 12m+1 14m+1/ 5m
T 8 2m+1 5m <m—1>
() _ (12m +1)(14m +1) (5m — 1)!
2m+1 2(dm+ D)l(m - 1)1

Note that (4) is an integer. Let f be the exponent of 2 in (4).

-l (S El)

k=1 k=1

Since (4) is an integer, f > 0 and
o o0 o0
om —1 4dm+1 m—1
3 () 2
k=1 k=1 k=1
We can conclude that if e < 3, then the minimum distance d # 4m + 4,
ie,d<4m+4.

The cases of I = 2 and | = 3 can be proved similarly. Now assume
that [ =5 and m = even. By a similar calculation to (3),

2(24m+10)/2—6(2m+1)

. B ;(12;7;1 5)(5m +1) (5m — 1)!
©) B om + 1 2(4m+ Di(m — DI

Let g be the exponent of 2 in (5). Since m is assumed to be even,

=S5 S

k=1

Since (5) is an integer, g > 0 and

< [5m —1 2 [4m+1] =[m -1

-3 (B[] ) >
k=1 k=1 k=1

If e <1, then the minimum distance d # 4m + 4, ie., d<4m+4. U

In the above Theorem 3, the main point is the calculation of e. The
following Lemma, gives another method for the calculation of e.

LEMMA 4. Let m be a positive integer. Suppose m,m — 1,5m — 1
are described by binary representations,

m = a-1-2"" 4ar2-27 4+ ta;-2 4 a9 2%,
m—1 = b1-2"" b b g 2724 by 20+ by 20,
om—1 = cr+2-2T+2+cr+1-2r+1+-'-+01-21+co-20,
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where (a;, b;,¢; € {0,1},0 < i <r+2). If

g

k= k=1

and
A={i:cyo<aj+biy,0< i <7 —1},
then
e=|A|

Proof. Note that
dm4+l=ar1 27 40,0 2"+ +ap-224+0-2 +1-20
Since 5m —1=(m—1)+ (4m+1) -1,
5m—1= (ar_1+brg1) -2 4 (@ 4+ bp) - 27 + - + (ag + by) - 22
+by -2 by 20,

where b,11 = b, = 0. We use the following identities.

i[zzéd 2@} Zki[ } (di €0,1).
SR lE S

If ¢;12 < a; + biy2, then there is a carry to 2i+3th position. This fact
and above two identities imply that e is equal to the sum of carries, i.e.,
e = |A|. O

We obtain the following Corollary from the above Lemma 4 and The-
orem 3.

COROLLARY 5. (i) For each | = 1,2,3,5, there are infinitely many
m’s such that there is no [24m+ 21,12m + [, d] extremal Type I self-dual
code.

(i) If 1 = 1,2,3 and 1 < m < 100, then for at least 61 values of m,
there is no [24m + 21,12m + 1, d] extremal Type I self-dual code.

(iii) If 1 = 1,2,3 and 1 < m < 1000, then for at least 336 values of
m, there is no 24m + 21,12m + 1, d] extremal Type I self-dual code.

(iv) If | = 5, m = even, and 1 < m < 100, then for at least 23 values
of m, there is no [24m + 21,12m + [, d] extremal Type I self-dual code.
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(v) Ifl =5, m = even, and 1 < m < 1000, then for at least 103
values of m, there is no [24m + 21,12m + [, d] extremal Type I self-dual
code.

Proof. For (i), if we take m = 28 +2 (k > 4), then |A| = ¢ = 0 in
Lemma 4. The remaining assertions follow from Table 1. O

We include Table 1 which contains these m values of Corollary 5(ii),
(iii), (iv), (v). We added ! = 5,m = 1 in Table 1, since there is no
(34,17, 8] extremal self-dual codes by the Table 1 in [5].

Until now, there is no known [24m + 2[,12m + [, 4m + 4] extremal
binary self-dual code with [ = 1,2,3,5. We invite the reader to prove
the following conjecture or find a counter-example.

CONJECTURE. There is no [24m+ 2, 12m + [, 4m+ 4] extremal Type
I binary self-dual code withl =1,2,3,5.

3. Additive self-dual codes over GF(4)

The main idea of this section is similar to section 2. The weight enu-
merator of an additive self-dual code over GF(4) is defined by the same
way in the binary code. We are interested in only Type I code. From
now on C is assumed as a Type I code. By [8], the weight enumerator
of C, Wg(z,y), and its shadow code weight enumerator, Wg(z,y), are
given by

[n/2]
(6) Wolz,y) = Y ci(z+y)" *{ylz - )},
=0
mo . .
(7) Ws(z,y) = Y (-1)2" Sey" (2 — y?),
i=0

for suitable constants ¢;. We rewrite (6), (7) as the following form
n
Wo(ly) = > af
§=0
[n/2] ‘ .
= > a(l+y)" (1 -},

=0
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TABLE 1. Values of m for which no [24m + 2[,12m +
[,4m + 4] extremal Type I binary self-dual code exists

1=1,2,3
1<m <100

1234568910111216171819 20212224

25 32 33 34 35 36 37 38 40 41 42 43 44 48 49 50

51 64 65 66 67 68 69 70 72 73 74 75 76 80 81 82
83 84 86 88 89 96 97 98 99 100

101 102 128 129 130 131 132 133 134 136 137 138
139 140 144 145 146 147 148 149 150 152 153 160
161 162 163 164 165 166 168 169 172 176 177 178
179 192 193 194 195 196 197 198 200 201 202 203
204 256 257 258 259 260 261 262 264 265 266 267
268 272 273 274 275 276 277 278 280 281 288 289
290 291 292 293 294 296 297 298 299 300 304 305
306 307 320 321 322 323 324 325 326 328 329 330
331 332 336 337 338 339 344 345 352 353 354 355
356 357 358 384 385 386 387 388 389 390 392 393
394 395 396 400 401 402 403 404 405 406 408 409
512 513 514 515 516 517 518 520 521 522 523 524
528 529 530 531 532 533 534 536 537 544 545 546
547 548 549 550 552 553 554 555 556 560 561 562
563 576 577 578 579 580 581 582 584 585 586 587
588 592 593 594 595 596 598 600 601 608 609 610
611 612 613 614 640 641 642 643 644 645 646 648
649 650 651 652 656 657 658 659 660 662 664 665
672 673 674 675 676 678 688 689 690 691 704 705
706 707 708 709 710 712 713 714 715 716 768 769
770 771 772 773 774 776 777 778 779 780 784 785
786 787 788 789 790 792 793 800 801 802 803 804
805 806 808 809 810 811 812 816 817 818 819

[=5

1<m <100

124681216 18 24 32 34 36 38 48 50 64 66
68 70 72 76 96 98 100

=3

101 < m < 1000

102 128 130 132 134 136 140 144 146 152 192 194

196 198 200 204 256 258 260 262 264 268 272 274

280 288 290 292 294 304 306 384 386 388 390 392

396 400 402 408 512 514 516 518 520 524 528 530

536 544 546 548 550 560 562 576 578 580 582 584

588 608 610 612 614 768 770 772 774 776 780 784
786 792 800 802 804 806 816 818
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[n/2]
Ws(l,y) = byt
3=0
[n/2]
_ Z (_1)i2n—3iciyn—2i(1 _ y2)i’

=0 _
where t = n (mod 2). As before, ag = 1, and all a; and b; must be
nonnegative integers. One can write c; as a linear combination of the a;
for 0 < j < 4. Also one can write (—1)?2""%¢; as a linear combination
of b; for 0 < j < [n/2] —i. Note that the coeflicients of these linear
combinations are all integers. As a result, ¢; and 2" 3%¢; are all integers
for 0 < ¢ < [n/2].

Define «;(n) to be the coefficient of ag in the expansion of ¢; in terms

of a; for 0 < 5 <. For ¢ > 0,

az(n) - _% coeff. of yi_l in (1 +y)—n—1+2i(1 _ y)_i .

This follows from the Biirman-Lagrange theorem in [9]. We are ready
to prove the following theorem which states the sufficient condition for
the nonexistence of extremal self-dual additive codes over GF'(4).

THEOREM 6. Let C be a (6m +1,25™+1 d) Type I additive self-dual
code over GF(4). Let

Ll (Sl 1)

Ife < 2, then d < 2m + 2.

Proof. Let (6m + 1,26™+1 2m + 2) be a Type I extremal self-dual
code. Since a; =0 for 1 <i < 2m +1,

6m+1 3m
Comt1 = Qomi1(6m +1) = — ( ),

om+1

m
1 6m+1 3m
gfm-+1-3(2m+1) | - T )
(8) Cmil =757\ m

Note that (8) is an integer. Let f be the exponent of 2 in (8).

L RHEEER) -

k=1 k=1
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Since f > 0,
= [3m = [2m 2 [m
=SFHEF SR
k=1 k=1 k=1
We can conclude that if e < 2, then the minimum distance d # 2m + 2,
ie,d<2m+ 2. O

As before, the following Lemma gives another method for the calcu-
lation of e in Theorem 6.

LEMMA 7. Let m be a positive integer. Suppose m,3m are described
by binary representations,

m = ar1-2" tare-2" 2+ - 4ar- 2 +ag- 2,
3m = Cr+1‘2T+1+Cr'2T+“‘+Cl'21+CO'20,
where (a;,¢; € {0,1},0<i <r+1). If

o eSS s)

k=1 k=1 k=1
and
AZ{Z':CH_;[ <a,~+ai+1,0§i§r—1},
then
e =|A|.
Proof. Similar to Lemma 4. O

We obtain the following Corollary from the above Lemma 7 and The-
orem 6.

COROLLARY 8. (i) There are infinitely many m’s such that there
is no (6m + 1,26™+1 d) extremal Type I additive self-dual code over
GF(4).

(ii) If 1 < m < 100, then for at least 38 values of m, there is no
(6m + 1,25 d) extremal Type I additive self-dual code over GF(4).

(iii) If 1 < m < 1000, then for at least 164 values of m, there is no
(6m + 1,25™F- d) extremal Type I additive self-dual code over GF(4).

Proof. For (i), if we take m = 2% (k > 0), then |4] = ¢ = 0 in Lemma
7. (ii), (iii) follow from Table 2. O

We include Table 2 which contains these m values of Corollary 8 (ii),
(iii). As in Section 2, we conjecture the following statement.
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TABLE 2. Values of m for which no (6m+1,26m+1 2m +
2) extremal Type I additive self-dual code over GF'(4)
exists

1234589101617 1819 2021 32 33 34 35
1<m <100 36 37 40 41 42 64 65 66 67 68 69 72 73 74 80
81 82 83 84 85
128 129 130 131 132 133 136 137 138 144 145 146
147 148 149 160 161 162 163 164 165 168 169 170
256 257 258 259 260 261 264 265 266 272 273 274
275 276 277 288 289 290 291 292 293 296 297 298
320 321 322 323 324 325 328 329 330 336 337 338
101 < m < 1000 | 339 340 341 512 513 514 515 516 517 520 521 522
528 529 530 531 532 533 544 545 546 547 548 549
552 553 554 576 577 578 579 580 581 584 585 586
592 593 594 595 596 597 640 641 642 643 644 645
648 649 650 656 657 658 659 660 661 672 673 674
675 676 677 680 681 682

CONJECTURE. There is no (6m + 1,25™+1 2m + 2) extremal Type I
additive self-dual code over GF(4).
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