DOI QR코드

DOI QR Code

ON THE HEREDITARILY HYPERCYCLIC OPERATORS

  • Yousefi, Bahman (Department of Mathematics College of Science Shiraz University) ;
  • Farrokhinia, Ali (Department of Mathematics Tarbiat Modares University)
  • Published : 2006.11.01

Abstract

Let X be a separable Banach space. We give sufficient conditions under which $T:X{\rightarrow}X$ is hereditarily hypercyclic. Also, we prove that hereditarily hypercyclicity with respect to a special sequence implies the hereditarily hypercyclicity with respect to the entire sequence.

Keywords

References

  1. T. Bermudez, A. Bonilla and A. Peris, On hypercyclicity and supercyclicity cri- teria, Bull. Austral. Math. Soc. 70 (2004), no. 1, 45-54 https://doi.org/10.1017/S0004972700035802
  2. T. Bermudez, A. Bonilla, J. A. Conejero, and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170 (2005), no. 1, 57-75 https://doi.org/10.4064/sm170-1-3
  3. T. Bermudez and N. J. Kalton, The range of operators on von Neumann algebras, Proc. Amer. Math. Soc. 13 (2002), no. 5, 1447-1455
  4. L. Bernal-Gonzalez and K. -G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math. 157 (2003), no. 1, 17-32 https://doi.org/10.4064/sm157-1-2
  5. J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998
  6. J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998
  7. J. Bonet, Hypercyclic and chaotic convolution operators, J. London Math. Soc.(2) 62 (2000), no. 1, 253-262 https://doi.org/10.1112/S0024610700001174
  8. J. Bonet, F. Martinez-Gimenez, and A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 297 (2004), no. 2, 599-611 https://doi.org/10.1016/j.jmaa.2004.03.073
  9. P. S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44 (1997), no. 2, 345-353 https://doi.org/10.1307/mmj/1029005709
  10. P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125, Amer. Math. Soc. Providence, RI, 1997
  11. P. S. Bourdon and J. H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5293-5316 https://doi.org/10.1090/S0002-9947-00-02648-9
  12. G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc. 132 (2004), no. 2, 385-389
  13. C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995
  14. N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74 https://doi.org/10.1016/S0022-247X(02)00207-X
  15. R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288
  16. G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Func. Anal. 98 (1991), no. 2, 229-269 https://doi.org/10.1016/0022-1236(91)90078-J
  17. S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps prob- lem, J. Operator Theory 54 (2005), no. 1, 147-168
  18. K. G. Grosse-Erdmann, Holomorphic Monster und universelle Funktionen, Mitt. Math. Sem. Giessen No. 176 (1987), iv+84 pp
  19. K. G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381 https://doi.org/10.1090/S0273-0979-99-00788-0
  20. K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68 https://doi.org/10.4064/sm-139-1-47-68
  21. D. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93-103
  22. C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982
  23. F. Leon-Saavedra, Notes about the hypercyclicity criterion, Math. Slovaca 53 (2003), no. 3, 313-319
  24. A. Peris, Hypercyclicity criteria and Mittag-Leffler theorem, Bull. Soc. Roy. Sci. Liuege 70 (2001), no. 4-6, 365-371
  25. A. Peris and L. Saldivia, Syndentically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281 https://doi.org/10.1007/s00020-003-1253-9
  26. S. Rolewics, On orbits of elements, Studia Math. 32 (1969), 17-22 https://doi.org/10.4064/sm-32-1-17-22
  27. H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004 https://doi.org/10.2307/2154883
  28. J. H. Shapiro, Notes on the dynamics of linear operators, http://www.math.msu.edu/ shapiro
  29. A. L. Shields, Weighted shift operators and analytic function theory, Math. Sur- veys, Amer. Math. Soc. Providence 13 (1974), 49-128
  30. B. Yousefi, On the space ${\ell}^P({\beta})$ , Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 115-120 https://doi.org/10.1007/BF02904223
  31. B. Yousefi,Unicellularity of the multiplication operator on Banach spaces of formal power series, Studia Math. 147 (2001), no. 3, 201-209 https://doi.org/10.4064/sm147-3-1
  32. B. Yousefi, Bounded analytic structure of the Banach space of formal power series, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 3, 403-410 https://doi.org/10.1007/BF02871850
  33. B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces $H^P({\beta})$, Czechoslovak Math. J. 54 (129) (2004), no. 1, 261-266 https://doi.org/10.1023/B:CMAJ.0000027266.18148.90
  34. B. Yousefi,Composition operators on weighted Hardy spaces, Kyungpook Math. J. 44 (2004), no. 3, 319-324
  35. B. Yousefi, On the eighteenth question of Allen Shields, Internat. J. Math. 16 (2005), no. 1, 37-42 https://doi.org/10.1142/S0129167X05002758
  36. B. Yousefi and S. Jahedi, Composition operators on Banach spaces of formal power series, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 2, 481-487
  37. B. Yousefi and A. I. Kashkuli, Cyclicity and unicellularity of the differentiation operator on Banach spaces of formal power series, Math. Proc. R. Ir. Acad. 105 A (2005), no. 1, 1-7
  38. B. Yousefi and H. Rezaei, Hypercyclicity on the algebra of Hilbert-Schmidt oper- ators, Results in Mathematics 46 (2004), no. 1-2, 174-180 https://doi.org/10.1007/BF03322879
  39. B. Yousefi and H. Rezaei, Some necessary and sufficient conditions for hypercyclicity criterion, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 2, 209-216

Cited by

  1. Hereditarily transitive tuples vol.60, pp.3, 2011, https://doi.org/10.1007/s12215-011-0066-y
  2. Weighted Composition Operators and Supercyclicity Criterion vol.2011, 2011, https://doi.org/10.1155/2011/514370
  3. HEREDITARILY HYPERCYCLICITY AND SUPERCYCLICITY OF WEIGHTED SHIFTS vol.51, pp.2, 2014, https://doi.org/10.4134/JKMS.2014.51.2.363
  4. Boundedness and Compactness of the Mean Operator Matrix on Weighted Hardy Spaces vol.2012, 2012, https://doi.org/10.5402/2012/945741
  5. Disjoint hypercyclicity of weighted composition operators vol.125, pp.4, 2015, https://doi.org/10.1007/s12044-015-0246-3
  6. The spectra and eigenvectors for the weighted mean matrix operator vol.21, pp.2, 2015, https://doi.org/10.1016/j.ajmsc.2015.01.001
  7. Approximately Multiplicative Functionals on the Spaces of Formal Power Series vol.2011, 2011, https://doi.org/10.1155/2011/874949
  8. On the eleventh question of Allen Shields vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-16