References
- T. Bermudez, A. Bonilla and A. Peris, On hypercyclicity and supercyclicity cri- teria, Bull. Austral. Math. Soc. 70 (2004), no. 1, 45-54 https://doi.org/10.1017/S0004972700035802
- T. Bermudez, A. Bonilla, J. A. Conejero, and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170 (2005), no. 1, 57-75 https://doi.org/10.4064/sm170-1-3
- T. Bermudez and N. J. Kalton, The range of operators on von Neumann algebras, Proc. Amer. Math. Soc. 13 (2002), no. 5, 1447-1455
- L. Bernal-Gonzalez and K. -G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math. 157 (2003), no. 1, 17-32 https://doi.org/10.4064/sm157-1-2
- J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998
- J. Bes, Three problems on hypercyclic operators, PhD thesis, Kent State Univer- sity, 1998
- J. Bonet, Hypercyclic and chaotic convolution operators, J. London Math. Soc.(2) 62 (2000), no. 1, 253-262 https://doi.org/10.1112/S0024610700001174
- J. Bonet, F. Martinez-Gimenez, and A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 297 (2004), no. 2, 599-611 https://doi.org/10.1016/j.jmaa.2004.03.073
- P. S. Bourdon, Orbits of hyponormal operators, Michigan Math. J. 44 (1997), no. 2, 345-353 https://doi.org/10.1307/mmj/1029005709
- P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125, Amer. Math. Soc. Providence, RI, 1997
- P. S. Bourdon and J. H. Shapiro, Hypercyclic operators that commute with the Bergman backward shift, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5293-5316 https://doi.org/10.1090/S0002-9947-00-02648-9
- G. Costakis and M. Sambarino, Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc. 132 (2004), no. 2, 385-389
- C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC Press, 1995
- N. S. Feldman, Perturbations of hypercyclic vectors, J. Math. Anal. Appl. 273 (2002), no. 1, 67-74 https://doi.org/10.1016/S0022-247X(02)00207-X
- R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288
- G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Func. Anal. 98 (1991), no. 2, 229-269 https://doi.org/10.1016/0022-1236(91)90078-J
- S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps prob- lem, J. Operator Theory 54 (2005), no. 1, 147-168
- K. G. Grosse-Erdmann, Holomorphic Monster und universelle Funktionen, Mitt. Math. Sem. Giessen No. 176 (1987), iv+84 pp
- K. G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999), no. 3, 345-381 https://doi.org/10.1090/S0273-0979-99-00788-0
- K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68 https://doi.org/10.4064/sm-139-1-47-68
- D. Herrero, Hypercyclic operators and chaos, J. Operator Theory 28 (1992), no. 1, 93-103
- C. Kitai, Invariant closed sets for linear operators, Dissertation, Univ. of Toronto, 1982
- F. Leon-Saavedra, Notes about the hypercyclicity criterion, Math. Slovaca 53 (2003), no. 3, 313-319
- A. Peris, Hypercyclicity criteria and Mittag-Leffler theorem, Bull. Soc. Roy. Sci. Liuege 70 (2001), no. 4-6, 365-371
- A. Peris and L. Saldivia, Syndentically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281 https://doi.org/10.1007/s00020-003-1253-9
- S. Rolewics, On orbits of elements, Studia Math. 32 (1969), 17-22 https://doi.org/10.4064/sm-32-1-17-22
- H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004 https://doi.org/10.2307/2154883
- J. H. Shapiro, Notes on the dynamics of linear operators, http://www.math.msu.edu/ shapiro
- A. L. Shields, Weighted shift operators and analytic function theory, Math. Sur- veys, Amer. Math. Soc. Providence 13 (1974), 49-128
-
B. Yousefi, On the space
${\ell}^P({\beta})$ , Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 115-120 https://doi.org/10.1007/BF02904223 - B. Yousefi,Unicellularity of the multiplication operator on Banach spaces of formal power series, Studia Math. 147 (2001), no. 3, 201-209 https://doi.org/10.4064/sm147-3-1
- B. Yousefi, Bounded analytic structure of the Banach space of formal power series, Rend. Circ. Mat. Palermo (2) 51 (2002), no. 3, 403-410 https://doi.org/10.1007/BF02871850
-
B. Yousefi, Strictly cyclic algebra of operators acting on Banach spaces
$H^P({\beta})$ , Czechoslovak Math. J. 54 (129) (2004), no. 1, 261-266 https://doi.org/10.1023/B:CMAJ.0000027266.18148.90 - B. Yousefi,Composition operators on weighted Hardy spaces, Kyungpook Math. J. 44 (2004), no. 3, 319-324
- B. Yousefi, On the eighteenth question of Allen Shields, Internat. J. Math. 16 (2005), no. 1, 37-42 https://doi.org/10.1142/S0129167X05002758
- B. Yousefi and S. Jahedi, Composition operators on Banach spaces of formal power series, Boll. Unione Math. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 2, 481-487
- B. Yousefi and A. I. Kashkuli, Cyclicity and unicellularity of the differentiation operator on Banach spaces of formal power series, Math. Proc. R. Ir. Acad. 105 A (2005), no. 1, 1-7
- B. Yousefi and H. Rezaei, Hypercyclicity on the algebra of Hilbert-Schmidt oper- ators, Results in Mathematics 46 (2004), no. 1-2, 174-180 https://doi.org/10.1007/BF03322879
- B. Yousefi and H. Rezaei, Some necessary and sufficient conditions for hypercyclicity criterion, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 2, 209-216
Cited by
- Hereditarily transitive tuples vol.60, pp.3, 2011, https://doi.org/10.1007/s12215-011-0066-y
- Weighted Composition Operators and Supercyclicity Criterion vol.2011, 2011, https://doi.org/10.1155/2011/514370
- HEREDITARILY HYPERCYCLICITY AND SUPERCYCLICITY OF WEIGHTED SHIFTS vol.51, pp.2, 2014, https://doi.org/10.4134/JKMS.2014.51.2.363
- Boundedness and Compactness of the Mean Operator Matrix on Weighted Hardy Spaces vol.2012, 2012, https://doi.org/10.5402/2012/945741
- Disjoint hypercyclicity of weighted composition operators vol.125, pp.4, 2015, https://doi.org/10.1007/s12044-015-0246-3
- The spectra and eigenvectors for the weighted mean matrix operator vol.21, pp.2, 2015, https://doi.org/10.1016/j.ajmsc.2015.01.001
- Approximately Multiplicative Functionals on the Spaces of Formal Power Series vol.2011, 2011, https://doi.org/10.1155/2011/874949
- On the eleventh question of Allen Shields vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-16