DOI QR코드

DOI QR Code

Room-temperature Ferromagnetism in Fe-doped Reduced TiO2-δ

산소 결핍에 따른 Fe가 도핑된 TiO2-δ의 상온 강자성 현상에 관한 연구

  • Lee, H.M. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Kim, C.S. (Department of Physics, Kookmin University) ;
  • Uhm, Y.R. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute) ;
  • Rhee, C.K. (Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute)
  • 이희민 (한국원자력연구소 원자력나노소재응용랩) ;
  • 김철성 (국민대학교 물리학과) ;
  • 엄영랑 (한국원자력연구소 원자력나노소재응용랩) ;
  • 이창규 (한국원자력연구소 원자력나노소재응용랩)
  • Published : 2006.12.28

Abstract

Effects of oxygen deficiency on the room temperature ferromagnetism in Fe-doped reduced $TiO_2$ have been investigated by comparing the air-annealed $Ti_{0.97}Fe_{0.03}O_2$ compound with secondly post-annealed one in vacuum ambience. The air-annealed sample showed a paramagnetic behavior at room temperature. However, when the sample was further annealed in vacuum, a strongly enhanced ferromagnetic behavior was observed at same temperature. $M{\"{o}}ssbauer$ spectra of air-annealed sample at 295K showed a single doublet of $Fe^{3+}$, suggesting that the Fe ions are paramagnetic. On the other hand, the absorption spectra after vacuum-annealing exhibited two doublets, in which one is the same component with air-annealed sample and the other is new doublet corresponding to $Fe^{2+}$ state. This result suggests that the occurrence of ferromagnetism in reduced sample may be interpreted as the contribution of unquenched orbital moment of $Fe^{2+}$ ions.

Keywords

References

  1. H. Ohno: Science, 281 (1998) 951 https://doi.org/10.1126/science.281.5379.951
  2. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto and Y. Iye: Appl. Phys. Lett., 69 (1996) 363 https://doi.org/10.1063/1.118061
  3. A. Oiwa, T. Slupinski and H. Munekata: Appl. Phys. Lett., 78 (2001) 518 https://doi.org/10.1063/1.1343497
  4. T. Dietl. H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science, 287 (2000) 1019 https://doi.org/10.1126/science.287.5451.287
  5. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma: Science, 291 (2001) 854 https://doi.org/10.1126/science.1056186
  6. H. J. Lee, S. Y. Jeong, C. R. Cho and C. H. Park: Appl. Phys. Lett., 81 (2002) 4020 https://doi.org/10.1063/1.1517405
  7. S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. D. Sarma, H. D. Drew, R. L. Greene and T. Venkatesan: Phys. Rev. Lett., 91 (2003) 77205 https://doi.org/10.1103/PhysRevLett.91.077205
  8. N. H. Hong, J. Sakai, N. T. Huong and V. Brize: Appl. Phys. Lett., 87 (2005) 102505 https://doi.org/10.1063/1.2041822
  9. K. A. Griffin, A. B. Pakhomov, C. M. Wang, S. M. Heald and K. M. Krishnan: Phys. Rev. Lett., 94 (2005) 157204 https://doi.org/10.1103/PhysRevLett.94.157204
  10. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald and M. Venkatesan: Appl. Phys. Lett., 84 (2004) 1332 https://doi.org/10.1063/1.1650041