DOI QR코드

DOI QR Code

Role of Riboflavin in Induced Resistance against Fusarium Wilt and Charcoal Rot Diseases of Chickpea

  • Saikia Ratul (National Bureau of Agriculturally Important Microorganisms(NBAIM)) ;
  • Yadav Mukesh (National Bureau of Agriculturally Important Microorganisms(NBAIM)) ;
  • Varghese Saju (National Bureau of Agriculturally Important Microorganisms(NBAIM)) ;
  • Singh Bhim Pratap (National Bureau of Agriculturally Important Microorganisms(NBAIM)) ;
  • Gogoi Dip K (Biotechnology Division, Regional Research Laboratory(CSIR)) ;
  • Kumar Rakesh (National Bureau of Agriculturally Important Microorganisms(NBAIM)) ;
  • Arora Dilip K (National Bureau of Agriculturally Important Microorganisms(NBAIM))
  • Published : 2006.12.01

Abstract

Riboflavin caused induction of systemic resistance in chickpea against Fusarium wilt and charcoal rot diseases. The dose effect of 0.01 to 20 mM riboflavin showed that 1.0 mM concentration was sufficient for maximum induction of resistance; higher concentration did not increase the effect. At this concentration, riboflavin neither caused cell death of the host plant nor directly affected the pathogen's growth. In time course observation, it was observed that riboflavin treated chickpea plants were inducing resistance 2 days after treatment and reached its maximum level from 5 to 7 days and then decreased. Riboflavin had no effect on salicylic acid(SA) levels in chickpea, however, riboflavin induced plants found accumulation of phenols and a greater activities of phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) protein, peroxidase was observed in induced plant than the control. Riboflavin pre-treated plants challenged with the pathogens exhibited maximum activity of the peroxidases 4 days after treatment. Molecular weight of the purified peroxidase was 42 kDa. From these studies we demonstrated that riboflavin induced resistance is PR-protein mediated but is independent of salicylic acid.

Keywords

References

  1. Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin $B_{1}$ functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515 https://doi.org/10.1104/pp.104.058693
  2. Alvarez, M., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A. and Ryals, J. 1998. Increased tolerance to two Oomycetes pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci., USA 90:7327-7331
  3. Andrews, J. H., O'Mara, J. K. and Mc Manus, R. S. 2001. Methionin-riboflavin and potassium bicarbonate-polymer sprays control apple flyspeck and sooty blotch. Online Pl. Health Prog., Doi:10.1094/PHP-2001-0706-01-RS
  4. Bhatti, H. N., Najma, A., Asgher, M., Hanif, M. A. and Zia, M. A. 2006. Purification and thermal characterization of a novel peroxidase from a local chick pea cultivar. Protein & Peptide Lett. 13:799-804 https://doi.org/10.2174/092986606777841271
  5. Beyer, P., Al-Babilis, S., Ye, X., Lucca, P., Schaub, P., Welsch, R. and Potrykus, I. 2002. Golden rice introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J. Nutr. 132:506S-510S https://doi.org/10.1093/jn/132.3.506S
  6. Delaney, T. P. 1997. Genetic dissection of acquired resistance to disease. Plant. Physiol. 113:5-12 https://doi.org/10.1104/pp.113.1.5
  7. Delledonne, M., Xia, Y., Dixon, R. A. and Lamb, C. 1998. Nitric oxide functions as a signal in plant disease resistance. Nature 394:585-588 https://doi.org/10.1038/29087
  8. Dickerson, D. P., Pascholati, S. F., Hagerman, A. E., Butler, L. G. and Nicholson, R. L. 1984. Phenylalanin ammonia-lyase and hdrooxy cinnamate: CoA ligase in maize mesocotyles inoculated with Helminthosporium carbonum. Physiol. Plant Pathol. 25:111-123 https://doi.org/10.1016/0048-4059(84)90050-X
  9. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811 https://doi.org/10.1094/PHYTO.2000.90.8.801
  10. Dong, H., Liu, A., Wang, Y., Liu, B., Fan, H., Liu, G., Wang, R., Chen, J., Sun, Y., Zhang, L., Qian, Y., Gao, Z., Xu, Q., Sun, X. and Sang, C. 1995. Control of browm spot by induced resistance in tobacco: Preparation SRS2, its functions to control the disease and to improve qualitative and economic properties of the cured leaves. In: Induced resistance against diseases in plants, ed. by H. Dong, pp 422-427. Science Press, Beijing
  11. Gastaldi, G., Laforenza, U., Gasirola, D., Ferrari, G., Tosco, M. and Rindi, G. 1999. Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. J. Nutr. 129:406-409
  12. Gregory, J. F. 1998. Nutritional properties and significance of vitamin glycosides. Ann. Rev. Nutr. 18:277-296 https://doi.org/10.1146/annurev.nutr.18.1.277
  13. Hammerschmidt, R. and Kuc, J. 1995. Induced resistance to disease in plants, Kluwer Academic Publishers, Dordrecht, Netherlands
  14. Hammerschmidt, R., Nuckles, F. and Kuc, J. 1982. Association of enhance peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 20:73-82 https://doi.org/10.1016/0048-4059(82)90025-X
  15. Jabs, T., Dietrich, R. A. and Dangl, J. F. 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853-1856 https://doi.org/10.1126/science.273.5283.1853
  16. Kachroo, A., He, Z., Patkar, R., Zhu, Q., Zhone, J., Li, D., Ronaldo, P., Lamb, C. and Chattoo, B. B. 2003. Induction of $H_{2}O_{2}$ in transgenic rice leads to cell death and enhance resistance to both bacterial and fungal pathogens. Trans. Res. 12: 577-586 https://doi.org/10.1023/A:1025896513472
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4. Nature 227:680-685 https://doi.org/10.1038/227680a0
  18. Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155 https://doi.org/10.1094/Phyto-86-149
  19. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA-gene and of pyroverdine production. Phytopathology 84: 139-146 https://doi.org/10.1094/Phyto-84-139
  20. Mori, T. and Sakurai, E. 1996. Riboflavin affects anthocyanin synthesis in nitrogen culture using strawberry suspended cells. J. Food Sci. 61:698-702 https://doi.org/10.1111/j.1365-2621.1996.tb12184.x
  21. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I. and Yoshida, S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33:887-898 https://doi.org/10.1046/j.1365-313X.2003.01675.x
  22. Norris, D. M. 1991. Methods for inducing resistance in plants using environmentally safe antioxidants. U.S. Patent No. 5,004,493
  23. Packer, L., Podda, M., Kitazawa, M., Thiele, J., Saliou, C., Witt, E. and Traber, M. G. 1996. Vitamin E and the metabolic antioxidant network. In: Molecular Mechanism of Signaling and Membrane Transport, K.W.A. Wirtz. pp. 283-304, SpringerVerlag, Berlin
  24. Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laam, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580 https://doi.org/10.1105/tpc.10.9.1571
  25. Pieterse, C. M. J., Van Wees, S. C. M., Hoffland, E. and Van Pelt, J. A. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237 https://doi.org/10.1105/tpc.8.8.1225
  26. Ramanathan, A., Vidhyasekaran, P. and Samiyappan, R. 2001. Two pathogenesis-related peroxidases in greengram (Vigna radiata (L.) wilczek) leaves and cultured cells induced by Macrophomina phaseolina (Tassi) Goid. and its elicitor. Microbiol. Res. 156:139-144 https://doi.org/10.1078/0944-5013-00093
  27. Raskin, I., Turner, I. M. and Melander, W. R. 1989. Regulation of heat production in the inflorescences of an A run lily by endogenous salicylic acid. Proc. Natl. Acad. Sci. USA 86:2214-2218
  28. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358 https://doi.org/10.1016/0042-6822(61)90319-1
  29. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  30. Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A. K., Singh, K. and Arora, D. K. 2003. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol. Res. 158:871-881
  31. Saikia, R., Singh, B. P., Varghese, S., Kashyap, S. and Arora, D. K. 2004. Role of riboflavin in systemic resistance against Fusarium wilt and charcoal rot diseases of chickpea. 45th AMI Conference (23-25 Nov. 2004), pp. 14, National Dairy Research Institute, Karnal, India
  32. Saikia, R., Srivastava, A. K., Singh, K. and Arora, D. K. 2005. Effect of iron availability on induction systemic resistance to Fusarium wilt of chickpea by Pseudomonas spp. Mycobiology 33:35-40 https://doi.org/10.4489/MYCO.2005.33.1.035
  33. Thompson, J. E., Fahnestock, S., Farrall, Liao, D. I., Valent, B. and Jordan, D. B. 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetradydroxynaphthalene reductase. J. Biol. Chem. 275:34867-34872 https://doi.org/10.1074/jbc.M006659200
  34. Van Loon, L. C., Pierpoint, W. S., Boller, T. and Conejero, V. 1994. Recommendation for naming plant pathogenesis related proteins. Plant Mol. Biol. Rep. 12:245-264 https://doi.org/10.1007/BF02668748
  35. Van Loon, L. C., Bakker, P. A. H. M. and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-485 https://doi.org/10.1146/annurev.phyto.36.1.453
  36. Van Peer, R. and Schippers, B. 1992. Lipopolysaccharides of plant growth promoting Pseudomonas spp. strain WCS417r induced resistance in carnation to Fusarium wilt. Neth. J. Plant Pathol. 98:129-139 https://doi.org/10.1007/BF01996325
  37. Van Peer, R., Niemann, G. J. and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas spp. strain WCS417r. Phytopathology 81:728-734 https://doi.org/10.1094/Phyto-81-728
  38. Van Wees, S. C. M., Pieterse C. M. J., Trijssenaar, A., Van't Westende, Y. A. M., Hartog, F. and Van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 10:716-724 https://doi.org/10.1094/MPMI.1997.10.6.716
  39. Vicentini, C. B., Forlani, G., Manfrini, M., Romagnoli, C. and Mares, D. 2002. Development of new fungicides against Magnaporthe grisea: synthesis and biological activity of pyrazolo [3,4-d][1,3] thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine and pyrazolo [3,4-d] pyrimidine derivatives. J. Agri. Food Chem. 50:4839-4845 https://doi.org/10.1021/jf0202436
  40. Wang, S. and Tzeng, D. D. 1998. Methionine-riboflavin mixtures with surfactants and metal ions reduced powdery mildew infection in straw-berry plants. J. Amer. Soc. Sci. 123:987-991
  41. Wolinsky, I. and Driskell, J. A. D. 1997. Sports nutrition: vitamins and trace element. CRC Press, Boca Raton, FL
  42. Young, S. A., Guo, A., Guikema, J. A., White, F. and Leach, J. E. 1995. Rice cationic peroxidase accumulating in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol. 107:1333-1341 https://doi.org/10.1104/pp.107.4.1333
  43. Zubay, G. 1998. Biochemistry. Brown Publishers, Dubuque, IA

Cited by

  1. Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine vol.136, pp.4, 2013, https://doi.org/10.1007/s10658-013-0211-x
  2. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response vol.75, pp.1-2, 2010, https://doi.org/10.1016/j.pmpp.2010.08.001
  3. Abiotic elicitors mediated resistance and enhanced defense related enzymes in Capsicum annuum L. against anthracnose disease vol.204, 2016, https://doi.org/10.1016/j.scienta.2016.04.004
  4. Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease vol.39, pp.4, 2011, https://doi.org/10.5941/MYCO.2011.39.4.290
  5. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0160688
  6. Vitamins for enhancing plant resistance vol.244, pp.3, 2016, https://doi.org/10.1007/s00425-016-2552-0
  7. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3 vol.8, 2017, https://doi.org/10.3389/fmicb.2017.01895
  8. Real-time PCR Assay Based on Topoisomerase-II Gene for Detection of Fusarium udum vol.171, pp.5, 2011, https://doi.org/10.1007/s11046-010-9382-6
  9. Ectopic Expression of Riboflavin-binding Protein Gene TsRfBP Paradoxically Enhances Both Plant Growth and Drought Tolerance in Transgenic Arabidopsis thaliana vol.32, pp.1, 2013, https://doi.org/10.1007/s00344-012-9285-5
  10. strains vol.51, pp.1-2, 2018, https://doi.org/10.1080/03235408.2018.1438819