DOI QR코드

DOI QR Code

고등식물의 엽록체 형질전환: 원핵생물과 진맥생물의 조우

Chloroplast Genetic Transformation in Higher Plants: An Encounter Between Prokaryote and Eukaryote

  • 정화지 (한국생명공학연구원 식물유전체연구센터) ;
  • 서영배 (서울대학교 천연물과학연구소) ;
  • 정원중 (한국생명공학연구원 식물유전체연구센터) ;
  • 민성란 (한국생명공학연구원 식물유전체연구센터) ;
  • 유장렬 (한국생명공학연구원 식물유전체연구센터)
  • Chung, Hwa-Jee (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Suh, Young-Bae (Natural Products Research Institute, Seoul National University) ;
  • Jeong, Won-Joong (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Min, Sung-Ran (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Liu, Jang-R. (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 발행 : 2006.09.30

초록

엽록체는 숙주세포에 잡아먹힌 (식균작용) 남세균이 숙주세포와 공생관계를 형성하여 온 것으로 간주된다. 엽록체 게놈은 정적이라고 이해하고 있지만 형질전환을 통하여 상동염기가 도입되면 이와는 반대로 intramolecular homologous recombination에 의해 subgenomic circle을 만드는 등 매우 다이나믹하다는 것이 최근에 증명되고 있다. 고등식물의 엽록체 형질전환은 핵 형질전환에서 기대할 수 없는 여러 이점을 제공한다. 예컨대, transgene의 발현율을 높일 수 있고, transgene들을 polycistronic하게 발현할 수 있으며, 도입된 transgene이 모계유전을 하게 된다는 것 등이다. 담배는 엽록체 형질전환의 모델 식물로 사용되어 왔으나 최근에는 벼, 대두, 면화 등 다른 주요 작물의 형질전환도 가능하게 되었다. 엽록체 형질전환된 작물은 미생물을 이용하여 고부가가치 단백질을 생산하는 생물반응기를 향후 대체할 수 있게 될 것이다.

Chloroplasts are believed to be descended from certain cyanobacteria, which were taken up by phagocytosis into a host cell and lived there in a symbiotic relationship. In contrast to the current static concept on the chloroplast genome, its dynamism has been recently demonstrated: the chloroplast genome is active in intramolecular homolgous recombination, producing subgenomic circles when it obtains homolgous sequences via genetic transformation. Chloroplast tranformation in higher plants provides many advantages over nuclear transformation that include higher expression levels of transgenes, polycistronic expression of transgenes, and maternal transmission of transgenes. Tobacco has been used as a model for chloroplast genetic transformation. However, it is recently possible to transform the chloroplasts of other major food and economic crops including rice, soybean, and cotton. Chloroplast-transformed crops will be able to replace bioreactors using microorganisms for production of value-added proteins in future.

키워드

참고문헌

  1. Bausher MG, Singh NO, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6: 21 https://doi.org/10.1186/1471-2229-6-21
  2. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiies. Science 240: 1534-1538 https://doi.org/10.1126/science.2897716
  3. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49-56 https://doi.org/10.1007/BF00280200
  4. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WO, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Fumier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn, Jr. GH, Graham SW, Barrett SCH, Dayanandan S and Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of Missouri Botanical Garden 80: 528-580 https://doi.org/10.2307/2399846
  5. Chiba Y (1951) Cytochemical studies on chloroplasts. I. Cytologic demonstration of nucleic acids in chloroplasts. Cytologia (Tokyo) 16: 259-264 https://doi.org/10.1508/cytologia.16.259
  6. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potatochloroplast DNA sequence. Plant Cell Rep (in press)
  7. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions and several repeat families. Curr Genet 31: 419-429 https://doi.org/10.1007/s002940050225
  8. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16: 345-348 https://doi.org/10.1038/nbt0498-345
  9. Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39: 109-116 https://doi.org/10.1007/s002940100185
  10. Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum Iycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503-1518 https://doi.org/10.1007/s00122-006-0254-x
  11. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71-74 https://doi.org/10.1038/83559
  12. DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H ( 2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127: 852-862 https://doi.org/10.1104/pp.010233
  13. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127: 852-862 https://doi.org/10.1104/pp.010233
  14. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337-339 https://doi.org/10.1038/348337a0
  15. Dhingra A, Daniell H (2006) Chloroplast genetic engineering via organogenesis or somatic embryogenesis. Methods Mol Biol 323: 245-262
  16. Doyle JJ, Davis Jl, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversion and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89: 7723-7726
  17. Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis CrylAb protoxin. Plant Mol Bioi 58: 659-668 https://doi.org/10.1007/s11103-005-7405-3
  18. Goremykin W, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Bioi Evol 20: 1499-1405 https://doi.org/10.1093/molbev/msg159
  19. Goremykin W, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003b) The chloroplast genome of the 'basal' angiosperm Calycanthus fertilis - structural and phylogenetic analyses. Plant Sys Evol 242: 119-135 https://doi.org/10.1007/s00606-003-0056-4
  20. Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24: 83-107 https://doi.org/10.1080/07352680590935387
  21. Graham SW, Olmsgtead RW (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Amer J Bot 87: 1712-1730 https://doi.org/10.2307/2656749
  22. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185-194 https://doi.org/10.1007/BF02464880
  23. Hoot SB, Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Mol Evol 38: 274-281
  24. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18: 1172-1176 https://doi.org/10.1038/81161
  25. Jansen RK, Palmer JD (1987) A chloroplast inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84: 5818-5822
  26. Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395: 348-384 https://doi.org/10.1016/S0076-6879(05)95020-9
  27. Jeong SW, Jeong WJ, Woo JW, Choi DW, Park VI, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep 22: 747-751 https://doi.org/10.1007/s00299-003-0740-4
  28. Jeong WJ, Park VI, Suh KH, Raven JA, Voo WJ, Liu JR (2002) A large population of small chloroplasts confer more effective chloroplast movement over a few enlarged chloroplasts in tobacco leaf cells. Plant Physiol 129: 112-121 https://doi.org/10.1104/pp.000588
  29. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17: 910-915 https://doi.org/10.1038/12907
  30. Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25: 334-340 https://doi.org/10.1007/s00299-005-0097-y
  31. Klaus SM, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently co integrated selection gene. Nat Biotechnol 22: 225-229 https://doi.org/10.1038/nbt933
  32. Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Maar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2, protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96: 1840-1845
  33. Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136: 2843-2854 https://doi.org/10.1104/pp.104.045187
  34. Kusnadi A, Nikolov G, Howard, J (1997) Production of recombinant proteins in plants: practical considerations. Biotechnol Bioengineer 56: 473-484 https://doi.org/10.1002/(SICI)1097-0290(19971205)56:5<473::AID-BIT1>3.0.CO;2-F
  35. Lavin M, Doyle JJ, Palmer JD (1990) Systematic and evolutionary significance of the loss of the large chloroplast DNA inverted repeat in the family Leguminosae. Evolution 44: 390-402 https://doi.org/10.2307/2409416
  36. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11: 1-13 https://doi.org/10.1023/A:1022100404542
  37. Liu JR, Jeong WJ, Chung HJ, Min SR, Park JV (2006) Plastid transformation system to prevent the intramolecular recombination of transgene. PCT/2006/004377
  38. Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5: 164-172 https://doi.org/10.1016/S1369-5266(02)00248-0
  39. Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21: 20-28
  40. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55: 289-313 https://doi.org/10.1146/annurev.arplant.55.031903.141633
  41. Martin M, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251
  42. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165 https://doi.org/10.1038/30234
  43. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13: 362-365 https://doi.org/10.1038/nbt0495-362
  44. Odintsova MS, Yurina NP (2003) Plastid genome of higher plants and algae: structure and functions. Mol Bioi 37: 649-662 https://doi.org/10.1023/A:1026020623631
  45. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, lnokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574 https://doi.org/10.1038/322572a0
  46. Palmer JD, Aldrich J, Thompson WF (1987b) Chloroplast evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11: 275-286 https://doi.org/10.1007/BF00355401
  47. Palmer JD, Nugent JM, Herbon LA (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions and two repeat families. Proc Natl Acad Sci USA 84: 769-773
  48. Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697-1699 https://doi.org/10.1126/science.255.5052.1697
  49. Raubeson LA and Stein DB (1995) Insights into fern evolution from mapping chloroplast genomes. American Fern Journal 85: 193-204 https://doi.org/10.2307/1547809
  50. Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genetics and Genomes (in press)
  51. Ruf S, Hermarrn M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. nature Biotech 19: 870-875 https://doi.org/10.1038/nbt0901-870
  52. Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carata: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7: 222 https://doi.org/10.1186/1471-2164-7-222
  53. Schmitz-Linneweber C, Regel R. Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol BioI Evol 19: 1602-1612 https://doi.org/10.1093/oxfordjournals.molbev.a004222
  54. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shin ozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043-2049
  55. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical Advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19: 209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  56. Sikdar SR, Serino G, Chaudhuri S, Maligap (1998) Plastid transformation in Arabidopsis thaliana Plant Cell Rep 18: 20-24 https://doi.org/10.1007/s002990050525
  57. Steane DA (2005) Complete Nucleotide Sequence of the Chloroplast Genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Res 2005 12: 215-220 https://doi.org/10.1093/dnares/dsi006
  58. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526-8530
  59. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913-917
  60. Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg AJ, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res 31: 1174-1179 https://doi.org/10.1093/nar/gkg221
  61. Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trrQ., trnK, psbA, trri and trnH and the absence of rps16. Mol Gen Genet 232: 206-214
  62. Wakasugi T, Sugita M, Tsudzuki T, Sugiura M. (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Bioi Rep 16: 231-241 https://doi.org/10.1023/A:1007564209282
  63. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black Pine Pinus thunbergii. Proc Nat! Acad Sci USA 91: 9794-9798
  64. Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land chloroplasts: gene content and alteration of genomic information by RNA editing. Photosyn Res 70: 107-118 https://doi.org/10.1023/A:1013892009589
  65. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648-10652
  66. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis. complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genornics 275: 367- 373 https://doi.org/10.1007/s00438-005-0092-6

피인용 문헌

  1. Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) vol.38, pp.1, 2011, https://doi.org/10.5010/JPB.2011.38.1.042
  2. Current status on plant molecular farming via chloroplast transformation vol.37, pp.3, 2010, https://doi.org/10.5010/JPB.2010.37.3.275