Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis

  • Park, Shin-Yong (Department of Bio-Technology, Hoseo University) ;
  • Kim, Koung-Mi (Department of Bio-Technology, Hoseo University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Sang-Dae (Department of Biology, Seonam University) ;
  • Lee, In-Hee (Department of Bio-Technology, Hoseo University)
  • Published : 2006.09.30

Abstract

Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.

Keywords

References

  1. Bowen, D., M. Blackburn, T. Rocheleau, C. Grutzmacher and R. H. Ffrench-Constant (2000) Secreted proteases from Pho­torhabdus luminescens: separation of the extracellular pro­teases from the insecticidal Tc toxin complexes. Insect Biochem. Mol. Biol. 30, 69-74 https://doi.org/10.1016/S0965-1748(99)00098-3
  2. Bowen, D. J. and J. C. Ensign (1998) Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium pho­torhabdus luminescens. Appl. Environ. Microbiol. 64, 3029-­3035
  3. Bulet, P., Hetru C., Dimarcq, J.L. and Hoffinann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Compo Immunol. 23, 329-344 https://doi.org/10.1016/S0145-305X(99)00015-4
  4. Caldas, C., A. Cherqui, A. Pereira and N. Simoes (2002) Puri­fication and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immuno­-suppression. Appl. Environ. Microbiol. 68, 1297-1304 https://doi.org/10.1128/AEM.68.3.1297-1304.2002
  5. Chavers, L. S., S. A Moser, W. H. Benjamin, S. E. Banks, J. R. Steinhauer, A. M. Smith, C. N. Johnson, E. Funkhouser, L. P. Chavers, A. M. Stamm and K. B. Waites (2003) Vancomy­cin-resistant enterococci: 15 years and counting. J. Hosp. Infect. 53, 159-171 https://doi.org/10.1053/jhin.2002.1375
  6. Chen, G., Y. Zhang, J. Li, G. B. Dunphy, Z. K. Punja and J. M. Webster (1996) Chitinase activity of Xenorhabdus and Pho­torhabdus species, bacterial associates of entomopathogenic nematodes. J. Invertebr. Pathol. 68, 101-108 https://doi.org/10.1006/jipa.1996.0066
  7. Dzidic, S. and V. Bedekovic (2003) Horizontal gene transfer­emerging multi drug resistance in hospital bacteria. Acta. Pharmacol. Sin. 24, 519-526
  8. Ernst, R.K., T. Guina and S. I. Miller (1999) How intracellular bacteria survive: surface modifications that promote resis­tance to host innate immune responses. J. Infect. Dis. 2, S326-S330
  9. Ffrench-Constant, R. H. and D. J. Bowen (2000) Novel insec­ticidal toxins from nematode-symbiotic bacteria. Cell. Mol. Life. Sci. 57, 828-833 https://doi.org/10.1007/s000180050044
  10. Frobius, A.C., M. R. Kanost, P. Gotz and A Vilcinskas (2000) Isolation and characterization of novel inducible serine pro­tease inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. Eur. J. Biochem. 267, 2046-2053 https://doi.org/10.1046/j.1432-1327.2000.01207.x
  11. Hughes, A. L. (1999) Evolutionary diversification of the mam­malian defensins. Cell. Mol. Life. Sci. 56, 94-103 https://doi.org/10.1007/s000180050010
  12. Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19 https://doi.org/10.1016/S0952-7915(02)00005-5
  13. Islam, D., L. Bandholtz, J. Nilsson, H. Wigzell, B. Christens­son, B. Agerberth and G. Gudmundsson (2001) Downregula­tion of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. 7, 180-185 https://doi.org/10.1038/84627
  14. Jang, W.S., K. N. Kim, Y. S. Lee, M. H. Nam and I. H. Lee (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Left. 19, 81-86
  15. Jarosz, J. (1998) Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity. Parasi­tology 117, 201-208 https://doi.org/10.1017/S0031182098003011
  16. Jeftke, T., D. Jende, C. Matje, R. U. Ehlers and L. Berthe-Corti (2000) Growth of Photorhabdus luminescens in batch and glucose fed-batch culture. Appl. Microbiol. Biotechnol. 54, 326-330 https://doi.org/10.1007/s002530000399
  17. Kim, C.H., J. H. Lee, I. Kim, S. J. Seo, S. M. Son, K. Y. Lee and I. H. Lee (2004) Purification and cDNA cloning of a Cecropin-like Peptide from the Great Wax Moth, Galleria mellonella. Mol. Cells 17, 262-266
  18. Kreft, B., R. Marre, U. Schramm and R. Wirth (1992) Aggre­gation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60, 25-30
  19. Lee, Y. S., E. K. Yun, W. S. Jang, I. Kim, J. H. Lee, S. Y. Park, K. S. Ryu, S. J. Seo, C. H. Kim and I. H. Lee (2004) Purifi­cation, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect. Mol. Biol. 13, 65-72 https://doi.org/10.1111/j.1365-2583.2004.00462.x
  20. Lehrer, R. I., M. Rosenman S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-­173 https://doi.org/10.1016/0022-1759(91)90021-7
  21. Moore, A. J., W. D. Beazley, M. C. Bibby and D. A. Devine (1996) Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37, 1077-1089 https://doi.org/10.1093/jac/37.6.1077
  22. Park, S. Y., C. H. Kim, W. H. Jong, J. H. Lee, S. J. Seo, Y. S. Han and I. H. Lee (2005) Effects oftwo hemolymph proteins on humoral defense reaction in the wax moth, Galleria mel­lonella. Dev. Compo Immunol. 29, 43-51 https://doi.org/10.1016/j.dci.2004.06.001
  23. Patel, R. (2003) Clinical impact of vancomycin-resistant enterococci. J. Antimicrob. Chemother. 51, 13-21 https://doi.org/10.1093/jac/dkg209
  24. Peschel, A., R. W. Jack, M. Otto, L. V. Collins, P. Staubitz, G. Nicholson, H. Kalbacher, W. F. Nieuwenhuizen; G. Jung, A. Tarkowski, K. P. van Kessel and J. A. van Strijp (2001) Sta­phylococcus aureus resistance to human defensins and eva­sion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067-1076 https://doi.org/10.1084/jem.193.9.1067
  25. Schagger, H. and G. von Jagow (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379 https://doi.org/10.1016/0003-2697(87)90587-2
  26. Schmidtchen, A., I. M. Frick, E. Andersson, H. Tapper and L. Bjorck (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46, 157-168 https://doi.org/10.1046/j.1365-2958.2002.03146.x
  27. Schmidtchen, A., I. M. Frick and L. Bjorck (2001) Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol. Microbiol. 39, 708-713 https://doi.org/10.1046/j.1365-2958.2001.02251.x
  28. Towbin, H., T. Staehelin and J. Gordon (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellu­lose sheets: procedure and some applications. Biotechnology 24, 145-149
  29. Vilmos, P. and E. Kurucz (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 59-66 https://doi.org/10.1016/S0165-2478(98)00023-6
  30. Whitten, M. M., I. F. Tew, B. L. Lee and N. A. Ratcliffe (2004) A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsu­lation reactions. J. Immunol. 172, 2177-2185 https://doi.org/10.4049/jimmunol.172.4.2177
  31. Yu, K. H., K. N. Kim, J. H. Lee, H. S. Lee, S. H. Kim, K. Y. Cho, M. H. Nam and J. H. Lee (2002) Comparative study on characteristics of Iysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Dev. Compo Immunol. 26, 707-713 https://doi.org/10.1016/S0145-305X(02)00027-7