DOI QR코드

DOI QR Code

Comparison of Mating Systems in Populations of Gleditsia japonica var. koraiensis

  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • Published : 2006.10.31

Abstract

The mating systems of two groups of natural populations of Gleditsia japonica var. koraiensis in Korea were determined using allozyme analysis. The result suggests that G. japonica var. koraiensis is predominantly outcrossing. The tm values of eight populations in Korea varied from 0.667 (Mdh-1) to 0.938 (ldh-1), giving an average 0.820. Population and individual outcrossing estimates were associated with flowering tree density or degree of spatial isolation. The reason for relatively low outcrossing rates of some populations could be attributed to reduction of effective population sizes of sib for the medicine, small population size, and isolation of flowering mature trees. The heterozygote excesses were observed in some natural populations, whereas other populations exhibited varying degrees of inbreeding and heterozygotes deficit. Thus, selection against homozygotes operated in the progeny populations throughout the life cycle.

Keywords

References

  1. Brown AHD. 1990. Genetic characterization of plant mating systems. In: Plant population genetics, breeding, and genetic resources (Brown AHD, Clegg MT, Kaher AL, Weir BS, eds), Sinaur, Sunderland, Massachusetts. pp 145-162
  2. Brown AHD, Allard RW. 1970. Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66: 133-145
  3. Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Ann Rev Eco and Syst 18: 237-268 https://doi.org/10.1146/annurev.es.18.110187.001321
  4. Clegg MT. 1980. Measuring plant mating systems. BioScience 30: 814- 818 https://doi.org/10.2307/1308373
  5. Cruzan MB, Hamrick JL, Arnold ML, Bennet BD. 1994. Mating system variation in hybridizing irises effects of phenology and floral densities on family rates. Heredity 72: 95-105 https://doi.org/10.1038/hdy.1994.12
  6. Escalante AM, Coello G, Eguiarte LE. 1994. Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Am J Bot 81: 1096-1103 https://doi.org/10.2307/2445471
  7. Fyfe JL, Bailey NTJ. 1951. Plant breeding studies in leguminous forage crops. 1. Natural cross breeding in winter beans. J Agri Sci 41: 371-378 https://doi.org/10.1017/S0021859600049558
  8. Hall P, Chase MR, Bawa KS. 1994. Low genetic variation but high population differentiation in a common tropical forest tree species. Conserv Biol 8: 471-482 https://doi.org/10.1046/j.1523-1739.1994.08020471.x
  9. Heywood JC. 1991. Spatial analysis of genetic variation in plant populations. Ann Rew Eco Syst 22: 335-355 https://doi.org/10.1146/annurev.es.22.110191.002003
  10. Heywood JC. 1993. Biparental inbreeding depression in the self- incompatible annual plant Gaillardia pulchella (Asteraceae). Am J Bot 80: 545-550 https://doi.org/10.2307/2445370
  11. Holsinger KE. 1991. Mass-action models of plant mating systems: the evolutionary stability of mixed mating systems. Am Nat 138: 606- 622 https://doi.org/10.1086/285237
  12. Kang HS, Lee DK. 2006. Stand structure and regeneration pattern of Kalopanax septemlobus at the national deciduous broad- leaved forest in Mt. Jeombong, Korea. J Ecol Field Biol 29: 17-22 https://doi.org/10.5141/JEFB.2006.29.1.017
  13. Kim CG, Choung Y, Joo KY, Lee KS. 2006. Effects of hillslope treats for vegetation development and soil conservation in burned forests. J Ecol Field Biol 29: 295-303 https://doi.org/10.5141/JEFB.2006.29.3.295
  14. Liengsiri C, Boyle TJB, Yeh FC. 1998. Mating system in Pterocarpus macrocarpus Kurz in Thailand. J Hered 89: 216-221 https://doi.org/10.1093/jhered/89.3.216
  15. Maki M. 1993. Outcrossing and fecundity advantage of females in gynodiecious Chiongraphis japonica var. eurohimensis (Liliaceae). Am J Bot 80: 629-634 https://doi.org/10.2307/2445432
  16. Murawski DA, Dayanandan B, Bawa KS. 1994. Outcrossing rates of two endemic Shorea species from Sri Lankan tropical rain forests. Biotropica 26: 23-29 https://doi.org/10.2307/2389107
  17. Murawski DA, Hamrick JL. 1992. Mating system and phenology of Ceiba pentandra (Bombacaceae) in central Panama. J Hered 83: 401-404 https://doi.org/10.1093/oxfordjournals.jhered.a111241
  18. Nei M, Murawama T, Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10 https://doi.org/10.2307/2407137
  19. Riberiro RA, Lovato MB. 2004. Mating system in a neotropical tree species, Senna multijuga (Fabaceae). Genet Mol Biol 27: 418-424 https://doi.org/10.1590/S1415-47572004000300018
  20. Ritland K. 1990. A serious of FORTRAN computer programs for estimating plant mating systems. J Hered 81: 235-237
  21. Schnabel A. 1988. Genetic structure and gene flow in Geledtsia tricanthos L. Ph.D. Dissertation. Univ of Kansas, Lawrence
  22. Schnabel A, Hamrick JL. 1990. Organization of genetic diversity within and among populations of Geledtsia tricanthos (Leguminosae). Am J Bot 77: 1060-1069 https://doi.org/10.2307/2444577
  23. Soltis DE, Haufler H, Darrow DC, Gastony GJ. 1983. Starch gel electrophoresis of ferns: A complication of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J 73: 9-27 https://doi.org/10.2307/1546611
  24. Uyenoyama MK. 1986. Inbreeding and the cost of meiosis: the evolution of selfing in population practicing biparental inbreeding. Evolution 40: 388-404 https://doi.org/10.2307/2408817
  25. Woodland DW. 1991. Contemporary plant systematics. Prentice-Hall Inc., New Jersey, 582 pp
  26. Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420 https://doi.org/10.2307/2406450
  27. Yagoubi b, Chriki A. 2000. Estimation of mating system parameters in Hedysarum coronarium L. (Leguminosae, Fabaceae). Agronmie 20: 933-942 https://doi.org/10.1051/agro:2000103