Characterization of the Microbial Diversity in a Korean Solar Saltern by 16S rRNA Gene Analysis

  • Park, Soo-Je (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Kang, Cheol-Hee (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Rhee, Sung-Keun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2006.10.31

Abstract

We studied the diversity of the halophilic archaea and bacteria in crystallizer ponds of a Korean solar saltern by analyzing 16S rRNA gene libraries. Although diverse halophilic archaeal lineages were detected, the majority (56%) were affiliated with the uncultured and cultured Halorubrum group. Halophilic archaea that have been frequently observed in solar saltern environments previously, such as Halogeometricum, Halococcus, Haloarcula, and Haloferax, were not detected in our samples. The majority of clones (53%) belonged to the Cytophaga-Flavobacterium-Bacteroides and ${\alpha}-,\;{\gamma}-,\;and\;{\delta}-Proteobacteria$ groups, with 47% of the clones being affiliated with ${\gamma}-Proteobacteria$. We also identified new ${\delta}-Proteobacteria$-related bacteria that have not been observed in hypersaline environments previously. Our data show that the diversity of the halophilic archaea and bacteria in our Korean saltern differs from that of solar salterns found in other geographic locations. We also showed by quantitative real-time PCR analysis that bacteria can form a significant component of the microbial community in solar salterns.

Keywords

References

  1. Anton, J., R. Rossello-Mora, F. Rodriguez-Valera, and R. Amann. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66: 3052-3057 https://doi.org/10.1128/AEM.66.7.3052-3057.2000
  2. Benlloch, S., A. Lopez-Lopez, E. O. Casamayor, L. Ovreas, V. Goddard, F. L. Daae, G. Smerdon, R. Massana, I. Joint, F. Thingstad, C. Pedros-Alio, and F. Rodriguez-Valera. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4: 349-360 https://doi.org/10.1046/j.1462-2920.2002.00306.x
  3. Bolhuis, H., E. M. Poele, and F. Rodriguez-Valera. 2004. Isolation and cultivation of Walsby's square archaeon. Environ. Microbiol. 6: 1287-1291 https://doi.org/10.1111/j.1462-2920.2004.00692.x
  4. Bowman, J. P., S. A. McCammon, S. M. Rea, and T. A. McMeekin. 2000. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183: 81-88 https://doi.org/10.1111/j.1574-6968.2000.tb08937.x
  5. Burns, D. G., H. M. Camakaris, P. H. Janssen, and M. L. Dyall-Smith. 2004. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 70: 5258-5265 https://doi.org/10.1128/AEM.70.9.5258-5265.2004
  6. Chun, J., A. Huq, and R. R. Colwell. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65: 2202-2208
  7. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA. 89: 5685-5689
  8. Elshahed, M. S., F. Z. Najar, B. A. Roe, A. Oren, T. A. Dewers, and L. R. Krumholz. 2004. Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl. Environ. Microbiol. 70: 2230-2239 https://doi.org/10.1128/AEM.70.4.2230-2239.2004
  9. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  10. Ghauri, M. A., A. M. Khalid, S. Grant, S. Heaphy, and W. D. Grant. 2003. Phylogenetic analysis of different isolates of Sulfobacillus spp. isolated from uranium-rich environments and recovery of genes using integron-specific primers. Extremophiles 7: 341-345 https://doi.org/10.1007/s00792-003-0354-3
  11. Grant, W. D. and H. Larsen. 1989. Extremely halophilic archae-bacteria. Order Halobacteriales ord. nov., pp. 2216-2233. In J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 3. Williams &Wilkins, Baltimore, U.S.A
  12. Holmes, A. J., N. A. Tujula, M. Holley, A. Contos, J. M. James, P. Rogers, and M. R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol. 3: 256-264 https://doi.org/10.1046/j.1462-2920.2001.00187.x
  13. Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae, pp. 13-25. In Oren, A. (ed.). Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, FL
  14. Kim, B. S., H. M. Oh, H. Kang, S. S. Park, and J. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
  15. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. Joo, M. C. Kim, H. C. Shin, T. Kim, T. Ryu, S. J. Kweon, T. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial community structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  16. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
  17. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  18. Landis, G. A. 2001. Martian water: Are there extant halobacteria on Mars? Astrobiology 1: 161-164 https://doi.org/10.1089/153110701753198927
  19. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and M. Goodfellow. (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York
  20. Margesin, R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73-83 https://doi.org/10.1007/s007920100184
  21. McGenity, T. J., R. T. Gemmell, W. D. Grant, and H. Stan-Lotter. 2000. Origins of halophilic microorganisms in ancient salt deposits. Environ. Microbiol. 2: 243-250 https://doi.org/10.1046/j.1462-2920.2000.00105.x
  22. Munson, M. A., D. B. Nedwell, and T. M. Embley. 1997. Phylogenetic diversity of archaea in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol. 63: 4729-4733
  23. Ochsenreiter, T., F. Pfeifer, and C. Schleper. 2002. Diversity of archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6: 267-274 https://doi.org/10.1007/s00792-001-0253-4
  24. Ogino, A., H. Koshikawa, T. Nakahara, and H. Uchiyama. 2001. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J. Appl. Microbiol. 91: 625-635 https://doi.org/10.1046/j.1365-2672.2001.01424.x
  25. Oren, A. 2002. Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63 https://doi.org/10.1038/sj/jim/7000176
  26. Ovreas, L., L. Forney, F. L. Daae, and V. Torsvik. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63: 3367-3373
  27. Pasic, L., S. G. Bartual, N. P. Ulrih, M. Grabnar, and B. H. Velikonja. 2005. Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol. Ecol. 54: 491-498 https://doi.org/10.1016/j.femsec.2005.06.004
  28. Purdy, K. J., T. D. Cresswell-Maynard, D. B. Nedwell, T. J. McGenity, W. D. Grant, K. N. Timmis, and T. M. Embley. 2004. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 6: 591-595 https://doi.org/10.1111/j.1462-2920.2004.00592.x
  29. Rodriguez-Valera, F., F. Ruiz-Berraquero, and A. Ramos-Cormenzana. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbiol. Ecol. 7: 235-243 https://doi.org/10.1007/BF02010306
  30. Saitou, N. and M. Nei. 1987. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  31. So, J. S., K. Y. Lee, J. Soo, T. R. Heo, and S. C. Kim. 2002. Molecular identification of predominant Bifidobacterium strains isolated from Korean feces. J. Microbiol. Biotechnol. 12: 176-181
  32. Sorensen, K. B., D. E. Canfield, A. P. Teske, and A. Oren. 2005. Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352-7365 https://doi.org/10.1128/AEM.71.11.7352-7365.2005
  33. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  34. Walsh, D. A., R. T. Papke, and W. F. Doolittle. 2005. Archaeal diversity along a soil salinity gradient prone to disturbance. Environ. Microbiol. 7: 1655-1666 https://doi.org/10.1111/j.1462-2920.2005.00864.x
  35. Yeon, S. H., W. J. Jeong, and J. S. Park. 2005. The diversity of culturable organotrophic bacteria from local solar salterns. J. Microbiol. 43: 1-10