Improvement of PCR Amplification Bias for Community Structure Analysis of Soil Bacteria by Denaturing Gradient Gel Electrophoresis

  • Ahn, Jae-Hyung (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Min-Cheol (School of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Hye-Chul (School of Agricultural Biotechnology, Seoul National University) ;
  • Choi, Min-Kyeong (School of Agricultural Biotechnology, Seoul National University) ;
  • Yoon, Sang-Seek (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Tae-Sung (Ecosystem Disturbance Assessment Division, Nature and Ecology Research Department, National Institute of Environmental Research) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University) ;
  • Lee, Geon-Hyoung (Department of Biology, Kunsan National University) ;
  • Ka, Jong-Ok (School of Agricultural Biotechnology, Seoul National University)
  • Published : 2006.10.31

Abstract

Denaturing gradient gel electrophoresis (DGGE) is one of the most frequently used methods for analysis of soil microbial community structure. Unbiased PCR amplification of target DNA templates is crucial for efficient detection of multiple microbial populations mixed in soil. In this study, DGGE profiles were compared using different pairs of primers targeting different hypervariable regions of thirteen representative soil bacteria and clones. The primer set (1070f-1392r) for the E. coli numbering 1,071-1,391 region could not resolve all the 16S rDNA fragments of the representative bacteria and clones, and moreover, yielded spurious bands in DGGE profiles. For the E. coli numbering 353-514 region, various forward primers were designed to investigate the efficiency of PCR amplification. A degenerate forward primer (F357IW) often yielded multiple bands for a certain single 16S rDNA fragment in DGGE analysis, whereas nondegenerate primers (338f, F338T2, F338I2) differentially amplified each of the fragments in the mixture according to the position and the number of primer-template mismatches. A forward primer (F352T) designed to have one internal mismatch commonly with all the thirteen 16S rDNA fragments efficiently produced and separated all the target DNA bands with similar intensities in the DGGE profiles. This primer set F352T-519r consistently yielded the best DGGE banding profiles when tested with various soil samples. Touchdown PCR intensified the uneven amplification, and lowering the annealing temperature had no significant effect on the DGGE profiles. These results showed that PCR amplification bias could be much improved by properly designing primers for use in fingerprinting soil bacterial communities with the DGGE technique.

Keywords

References

  1. Ahn, J. H., M. S. Kim, M. C. Kim, H. C. Shin, J. S. Lim, G. T. Lee, J. K. Yun, and J. O. Ka. 0000. Analysis of bacterial diversity and community structure in forest soils contaminated with fuel hydrocarbon. J. Microbiol. Biotechnol. 16: 704-715
  2. Ayyadevara, S., J. J. Thaden, and R. J. Shmookler Reis. 2000. Discrimination of primer 3'-nucleotide mismatch by Taq DNA polymerase during polymerase chain reaction. Anal. Biochem. 284: 11-18 https://doi.org/10.1006/abio.2000.4635
  3. Bakken, L. R. and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13: 103-114 https://doi.org/10.1007/BF02011247
  4. Cho, W. S., E. H. Lee, E. H. Shim, J. S. Kim, H. W. Ryu, and K. S. Cho. 2005. Bacterial communities of biofilms sampled from seepage groundwater contaminated with petroleum oil. J. Microbiol. Biotechnol. 15: 952-964
  5. Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kulam, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: Database issue D294-D296 https://doi.org/10.1093/nar/gki038
  6. Crump, B. C., C. S. Hopkinson, M. L. Sogin, and J. E. Hobbie. 2003. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Appl. Environ. Microbiol. 70: 1494-1505 https://doi.org/10.1128/AEM.70.3.1494-1505.2004
  7. Dojka, M. A., P. Hugenholtz, S. K. Haack, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869-3877
  8. Felsenstein, J. 2004. PHYLIP (Phylogenetic Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle
  9. Ferguson, R. L., E. N. Buckley, and A. V. Palumbo. 1984. Response of marine bacterioplankton to differential filtration and confinement. Appl. Environ. Microbiol. 47: 49-55
  10. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhibiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346
  11. Ferris, M. J. and D. M. Ward. 1997. Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381
  12. Fisher, M. M. and E. W. Triplett. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65: 4630-4636
  13. Fromin, N., J. Hamelin, S. Tarnawski, D. Roesti, K. Jourdain-Miserez, N. Forestier, S. Teyssier-Cuvelle, F. Gillet, M. Aragno, and P. Rossi. 2002. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 4: 634-643 https://doi.org/10.1046/j.1462-2920.2002.00358.x
  14. Gafan, G. P. and D. A. Spratt. 2005. Denaturing gradient gel electrophoresis gel expansion (DGGEGE) - an attempt to resolve the limitations of co-migration in the DGGE of complex polymicobial communities. FEMS Microbiol. Lett. 253: 303-307 https://doi.org/10.1016/j.femsle.2005.09.048
  15. Harris, J. K., S. T. Kelley, and N. R. Pace. 2004. New perspective on uncultured bacterial phylogenetic division OP11. Appl. Environ. Microbiol. 70: 845-849 https://doi.org/10.1128/AEM.70.2.845-849.2004
  16. Hattori, T., H. Mitsui, H. Haga, N. Wakao, S. Shikano, K. Gorlach, Y. Kasahara, A. El-Beltagy, and R. Hattori. 1997. Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72: 21-28 https://doi.org/10.1023/A:1000201017238
  17. Hongoh, Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221: 299-304 https://doi.org/10.1016/S0378-1097(03)00218-0
  18. Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67: 3753-3755 https://doi.org/10.1128/AEM.67.8.3753-3755.2001
  19. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, H. C. Shin, T. S. Kim, T. H. Ryu, S. J. Kweon, T. S. Kim, D. H. Kim, and J. O. Ka. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093
  20. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383
  21. Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the ${\beta}$ subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. 1997. Appl. Environ. Microbiol. 63: 1489-1497
  22. Lerman, L. S. and K. Silverstein. 1987. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 15: 482-501
  23. Martin, F. H. and M. M. Castro. 1985. Base pairing involving deoxyinosine: Implications for probe design. Nucleic Acids Res. 13: 8927-8938 https://doi.org/10.1093/nar/13.24.8927
  24. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700
  25. Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-172 https://doi.org/10.1007/BF02529967
  26. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73: 127-141 https://doi.org/10.1023/A:1000669317571
  27. Pinhassi, J., M. M. Sala, H. Havskum, F. Peters, O. Guadayol, A. Malits, and C. Marrase. 2004. Change in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. 70: 6753-6766 https://doi.org/10.1128/AEM.70.11.6753-6766.2004
  28. Polz, M. F. and C. M. Cavanaugh. 1998. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64: 3724-3730
  29. Rappe, M. S. and S. J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57: 369-394 https://doi.org/10.1146/annurev.micro.57.030502.090759
  30. Ritchie, N. J., M. E. Schutter, R. P. Dick, and D. D. Myrold. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66: 1668-1675 https://doi.org/10.1128/AEM.66.4.1668-1675.2000
  31. Suzuki, M. T. and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630
  32. Tiedje, J. M., S. Asuming-Brempong, K. Nusslein, T. L. Marsh, and S. J. Flynn. 1999. Opening the black box of soil microbial diversity. Appl. Soil Ecol. 13: 109-122 https://doi.org/10.1016/S0929-1393(99)00026-8
  33. Vallaeys, T., E. Topp, G. Muyzer, V. Macheret, G. Laguerre, A. Rigaud, and G. Soulas. 1997. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol. Ecol. 24: 279-285 https://doi.org/10.1111/j.1574-6941.1997.tb00445.x
  34. Watanabe, I. and C. Furusaka. 1980. Microbial ecology of flooded rice soils. Adv. Microb. Ecol. 4: 125-168
  35. Watanabe, K., Y. Kodama, and S. Harayam. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Methods 44: 253-262 https://doi.org/10.1016/S0167-7012(01)00220-2
  36. Whiteley, A. S. and M. J. Bailey. 2000. Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl. Environ. Microbiol. 66: 2400-2407 https://doi.org/10.1128/AEM.66.6.2400-2407.2000
  37. Wintzingerode, F. V., U. B. Gobel, and E. Stackerbrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229 https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
  38. Wu, Y., V. M. Hayes, J. Osinga, I. M. Mulder, M. W. G. Looman, C. H. C. M. Buys, and R. M. W. Hofstra. 1998. Improvement of fragment and primer selection for mutation detection by denaturing gradient gel electrophoresis. Nucleic Acids Res. 26: 5432-5440 https://doi.org/10.1093/nar/26.23.5432
  39. Yu, Z. and W. W. Mohn. 2001. Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents. Water Res. 35: 883-890 https://doi.org/10.1016/S0043-1354(00)00335-3
  40. Yu, Z. and M. Morrison. 2004. Comparison of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70: 4800-4806 https://doi.org/10.1128/AEM.70.8.4800-4806.2004