References
- Abad, J. M., F. Pariente, L. Hernandez, H. D. Abruna, and E. Lorenzo. 1998. Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 70: 2848-2855 https://doi.org/10.1021/ac971374m
- Alfonta, L., E. Katz, and I. Willner. 2000. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal. Chem. 72: 927-935 https://doi.org/10.1021/ac990439d
- Alfonta, L., A. K. Singh, and I. Willner. 2001. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73: 91-102 https://doi.org/10.1021/ac000819v
- Babacan, S., P. Pivarnik, S. Letcher, and A. G. Rand. 2000. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron. 15: 615-621 https://doi.org/10.1016/S0956-5663(00)00115-9
- Bachmann, T. T., B. Leca, F. Villatte, J.-L. Marty, D. Fournier, and R. D. Schmid. 2000. Improved multianalyte detection of organophosphates and carbamates with disposable multiresidue biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural network. Biosens. Bioelectron. 15: 193-201 https://doi.org/10.1016/S0956-5663(00)00055-5
- Hill, E. F. and W. J. Fleming. 1982. Anticholinesterase poisoning of birds: Field monitoring and diagnosis of acute poisoning. Environ. Toxicol. Chem. 1: 27-38 https://doi.org/10.1897/1552-8618(1982)1[27:APOBFM]2.0.CO;2
- Jeyaratnam, J. 1990. Pesticides poisoning: As a major global health problem. World Health Stat. Quarter. 43: 139-144
- Karalliedde, L. 1999. Organophosphorus poisoning and anaesthesia. Anaesthesia 54: 1073-1088 https://doi.org/10.1046/j.1365-2044.1999.01061.x
- Karousos, N. G., S. Aouabdi, A. S. Way, and S. M. Reddy. 2002. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal. Chim. Acta 469: 189-196 https://doi.org/10.1016/S0003-2670(02)00668-2
- Kim, N., R. Haginoya, and I. Karube 1996. Characterization and food application of an amperometric needle-type L-lactate sensor. J. Food Sci. 61: 286-290 https://doi.org/10.1111/j.1365-2621.1996.tb14177.x
- Kim, N., K.-R. Park, I.-S. Park, Y.-J. Cho, and Y. M. Bae. 2005. Application of a taste evaluation system to the monitoring of kimchi fermentation. Biosens. Bioelectron. 20: 2283-2291 https://doi.org/10.1016/j.bios.2004.10.007
- Larsen, J. C. and G. Pascal. 1998. Workshop on the applicability of the ADI to infants and children: Consensus summary. Food Addit. Contam. (Suppl) 15: 1-9
- Martin, S. P., J. M. Lynch, and S. M. Reddy. 2002. Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance. Biosens. Bioelectron. 17: 735-739 https://doi.org/10.1016/S0956-5663(02)00057-X
- Martinez, C. R., R. E. Gonzales, A. M. J. Moran, and H. J. Mendez. 1992. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. 607: 37-45 https://doi.org/10.1016/0021-9673(92)87052-A
- Mulchandani, A., W. Chen, P. Mulchandani, J. Wang, and K. R. Rogers. 2001. Biosensors for direct determination of organophosphate pesticides. Biosens. Bioelectron. 16: 225-230 https://doi.org/10.1016/S0956-5663(01)00126-9
- Mulchandani, P., A. Mulchandani, I. Kaneva, and W. Chen. 1999. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 14: 77-85 https://doi.org/10.1016/S0956-5663(98)00096-7
- Pariente, F., C. LaRosa, F. Galan, L. Hernandez, and E. Lorenzo. 1996. Enzyme support systems for biosensor applications based on gold-coated nylon meshes. Biosens. Bioelectron. 11: 1115-1128 https://doi.org/10.1016/0956-5663(96)82334-7
- Park, I.-S., D.-K. Kim, and N. Kim. 2004. Responses of chloramphenicol immunosensor to analyte types. J. Microbiol. Biotechnol. 14: 1157-1162
- Park, I.-S. and N. Kim. 1998. Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosens. Bioelectron. 13: 1091-1097 https://doi.org/10.1016/S0956-5663(98)00067-0
- Pylypiw, H. M. 1993. Rapid gas chromatographic method for the multiresidue screening of fruits and vegetables for organochlorine and organophosphate pesticides. J. AOAC Intl. 76: 1369-1373
- Pyun, J. C., H. Beutel, J.-U. Meyer, and H. H. Ruf. 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 13: 839-845 https://doi.org/10.1016/S0956-5663(98)00050-5
- Rappaport, F., J. Fischl, and N. Pinto. 1959. An improved method for the estimation of cholinesterase activity in serum. Clin. Chim. Acta 4: 227-230 https://doi.org/10.1016/0009-8981(59)90134-2
- Reddy, S. M., J. P. Jones, T. J. Lewis, and P. M. Vadgama. 1998. Development of an oxidase-based glucose sensor using thickness-shear mode quartz crystals. Anal. Chim. Acta 363: 203-213 https://doi.org/10.1016/S0003-2670(98)00131-7
- Roger, K. R., Y. Wang, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Organophosphorus hydrolase-based fluorescence assay for organophosphate pesticides. Anal. Chem. 65: R40-R54 https://doi.org/10.1021/ac00060a004
- Sigma. 2003. Sigma Diagnostics Procedure No. 420 for ChE Assay
- Skladal, P. and P. Mascini. 1992. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterases. Biosens. Bioelectron. 7: 335-343 https://doi.org/10.1016/0956-5663(92)85029-A
- Volotovskky, V. and N. Kim. 2003. Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J. Microbiol. Biotechnol. 13: 373-377
- Wang, J., L. Chen, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11: 866-869 https://doi.org/10.1002/(SICI)1521-4109(199908)11:12<866::AID-ELAN866>3.0.CO;2-1