Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack (Department of Mechanical Engineering and Mechanics, Drexel University) ;
  • Yang, Guoliang (Department of Physics, Drexel University)
  • Published : 2006.10.01

Abstract

Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

Keywords

References

  1. Sauer-Budge, A. F., Nyamwanda, J. A., Lubensky, D. K. and Branton, D., 'Unzipping Kinetics of double-stranded DNA in a nanopore,' Phys Rev Let, 90, 238101-1 to 238101-4, 2003 https://doi.org/10.1103/PhysRevLett.90.238101
  2. Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J. and Golovchenko, J. A., 'Ion-beam sculpting at nanometer length scales,' Nature 412: 166-169, 2001 https://doi.org/10.1038/35084037
  3. Yong, C. and Pepin, A., 'Nanofabrication: Conventional and nonconventional methods,' Electrophoresis, 22, 187-207, 2001 https://doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
  4. Smith, H. I. and Craighead, H. G., 'Nanofabrication,' Phys. Today 43, 24-30, 1990
  5. Sze, S. M., 'Semiconductor Devices: Physics and Technology,' John Wiley, New York, 1985
  6. Deamer, D. W. and Branton, D., 'Characterizing of nucleic acids by nanopore analysis,' Acc. Chem. Res. 35, 817-825, 2002 https://doi.org/10.1021/ar000138m
  7. Nakao, M., Oku, S., Tamamura, T., Yasui, K. and Masuda, H., 'GaAs and InP Nanohole arrays fabricated by reactive beam etching using highly ordered alumna membranes,' Japanese J. of Apply. Phys., 38, 1052-1055, 1999 https://doi.org/10.1143/JJAP.38.1052
  8. Bhatia, S. and Nicholson, D., 'Molecular transport in nanopores,' J Chem. Phys., 119. 1719-1730, 2003 https://doi.org/10.1063/1.1580797
  9. Pores Help Nanogate Deliver, MEDICAL MATERIALS UPDATE, http://www.buscom.com/letters/mmupromo/mmu/mmu.html
  10. Pronko, P. P., Dutta, S. K., Squier, R. J. V., Du, D. and Mourou, G., 'Machining of sub-micron holes using a femtosecond laser at 800 nm,' Optics Commun., 114, 106-110, 1995 https://doi.org/10.1016/0030-4018(94)00585-I
  11. Siwy, Z. and Fulinski, A., 'Fabrication of a Synthetic nanopore ion pump,' Phys. Rev. Lett., 89, 198103-1 to 198103-198104, 2002 https://doi.org/10.1103/PhysRevLett.89.198103
  12. Johnson, R. E. and Shou, J., 'Sputtering of inorganic insulators,' K. Danske Vidensk. Selsk. Mat.-fys. Meddr., 43, 403-494, 1993
  13. Keller, D. and Chou, C., 'Imaging Steep, High Structures by Scanning Force Microscopy with Electron Beam Deposited Tip,' Surf. Sci., 268, 333-339, 1992 https://doi.org/10.1016/0039-6028(92)90973-A
  14. Hafner, J. H., Cheung, C. L., Oosterkamp, T. H. and Lieber, C. M., 'High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopes,' J. Phys. Chem. B 105, 743-747, 2001 https://doi.org/10.1021/jp003948o
  15. Hafner, J. H., Cheung, C. L. and Lieber, C. M., 'Direct growth of single-walled carbon nanotube scanning probe microscopy tips,' J. Amer Chem Soci, 121, 9750-9751, 1999 https://doi.org/10.1021/ja992761b
  16. Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T. and Smalley, R. E., 'Nanotubes as nanoprobes in scanning probe microscopy,' Nature, 384, 147-150, 1996 https://doi.org/10.1038/384147a0
  17. Gommans, H. H., Alldredge, J. W., Tashiro, H., Park, J., Magnuson, J. and Rinzler, A. G., 'Fibers of aligned singlewalled carbon nanotubes: Polarized Raman spectroscopy,' J. Appl. Phys. 88, 2509, 2000 https://doi.org/10.1063/1.1287128
  18. Li, J., Gershow1, M., Stein, D., Brandin, E. and Golovchenko, J. A., 'DNA molecules and configurations in a solid-state nanopore microscope,' Nature Materials 2, 611-615, 2003 https://doi.org/10.1038/nmat965