DOI QR코드

DOI QR Code

Size Effect on the Modulus of Rupture in Automotive Ceramic Monolithic Substrate using Optimization and Response Surface Method

반응표면법과 최적화방법을 이용한 자동차 세라믹 모노리스 담체의 파단계수에 미치는 치수효과

  • 백석흠 (동아대학교 기계공학과 대학원) ;
  • 신순기 (강원대학교 신소재공학과) ;
  • 주원식 (동아대학교 기계공학과) ;
  • 조석수 (강원대학교 자동차공학과)
  • Published : 2006.11.01

Abstract

Since the monolithic ceramic substrate was in introduced for automotive catalytic converters, the durability of the substrate has been a continuing requirement to reduce the emission, gas of vehicle. The substrate can occupy a volume as small as 82 $cm^3$ and as large as 8200 $cm^3$ to provide the required substrate for catalytic activity. The long-term durability varies with the size of the substrate from manufacture's point of view. Therefore this study presents that the response surface model using central composite design can explain size effect on the modulus of rupture in a cordierite ceramic monolithic substrate.

Keywords

References

  1. Gulati, S. T., 1991, 'Optimization of Substrate/?washcoat Interaction for Improved Catalyst Durability,' SAE Paper, No. 910372
  2. Gulati, S. T., 1992, 'Design Considerations for Diesel Flow Through Converters,' SAE Paper, No. 920145
  3. Griffith, A. A., 1920, 'The Phenomena of Rupture and Flow in Solids,' Phil. Trans. Royal Soc., Lodon, Vol. A221, pp. 163-198. https://doi.org/10.1098/rsta.1921.0006
  4. Cho, K. R., Kim, J. C. and Hong, Y. D., 1995, 'Exhaust Emission Characteristics of In-use Passenger cars Equipped with Three-way Catalyst,' Journal of Korea Air Pollution Research Association, Vol. 11, No. 2, pp. 153-162
  5. Myers, R. C., 1971, Response Surface Methodology, Allyn and Bacon, Inc., Boston
  6. Montgomery, D. C., 2001, Design and Analysis of Experiments, Fifth Edition, John & Sons
  7. Korngold, J. C. and Gabriele, G. A., 1997, 'Multidisciplinary Analysis and Optimization of Discrete Problems Using Response Surface Methods,' ASME J. Mech. Des., Vol. 119, No. 4, pp. 427-433 https://doi.org/10.1115/1.2826386
  8. Lee, T. H., Lee, K. K. and Koo, J. K. 2000, 'Optimization of Chassis Frame by Using D-Optimal Response Surface Model,' Transactions of KSME, A, Vol. 24, No. 4, pp. 894-899
  9. Youn, B. D. and Choi, K. K., 2004, 'A New Response Surface Methodology for Reliability-Based Design Optimization,' Computers and Structures, Vol. 82, Iss.2-3, PP. 241-256 https://doi.org/10.1016/j.compstruc.2003.09.002
  10. Baek, S. H., Cho, S. S., Kim, H. S. and Joo, W. S., 2006, 'Tarde-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials,' Journal of Mechanical Science and Technology, Vol. 20, No. 3, pp. 366-375 https://doi.org/10.1007/BF02917519
  11. Monthly Car and Tech Magazine(in korean), 2003, No. 2, CarTech Publication
  12. Maret, D., Gulati, S. T., Lambert, D. W. and Zink, U. 1991, 'Systems Durability of a Ceramic Racetrack Converter,' SAE Technical Paper, No. 912371
  13. Gulati, S. T. and Reddy, K. P., 1993, 'Measurement of Biaxial Compressive Strength of Cordierite Ceramic Honeycombs,' SAE Technical Paper, No. 930165
  14. ASTM E855-90, 1994, Metals Test Methods and Analytical Procedures, Vol. 03.02, pp. 650-657
  15. Krottmaier, J., 1993, Optimizing Engineering Designs, McGraw-Hill
  16. Neter, J., Wasserman, W. and Kutner, M. 1985, Applied Linear Statistical Models, Richard D. Irwin, Inc.
  17. Oh, H. G. and Kim, H. S., 1994, 'A Study on Statistical Nature of Fatigue Fracture Toughness,' Transactions of KSME, A, Vol. 18, No. 11, pp. 2894-2901
  18. Yiwang, B., Zongzhe, J. and Xiaorui, L., 1994, 'Evaluation of $K_{IC}$ Depending on Sample Size for Ceramics,' Engineering Fracture Mechanics, Vol. 48, No. 1, pp. 85-90 https://doi.org/10.1016/0013-7944(94)90145-7
  19. Kim, A. K., Koh, S. W. and Jung, G. D., 1996, 'A Probabilistic Study on Thickness Effect ?of Fracture Toughness in Heterogeneous Brittle Materials,' Transactions of KSME, A, Vol. 20, No. 4, pp. 1356-1362.
  20. Weibull, B. W. and Sweden, S., 1951, 'A Statistical Distribution Function of Wide Applicability,' Journal of Applied Mechanics, Vol. 18, pp. 293-297
  21. Castillo, E. D., Montgomery, D. C., and McCarville, D. R. 1996, 'Modified Desirability Functions for Multiple Response Optimization,' Journal of Quality Technology, Vol. 28, pp. 337-345 https://doi.org/10.1080/00224065.1996.11979684
  22. Derringer, G. and Suich, R., 1980, 'Simultaneous Optimization of Several Response Variables,' Journal of Quality Technology, Vol. 12, pp. 214-282
  23. Phadke, M. S., 1989, Quality Engineering Using Robust Design, Prentice Hall, New Jersey

Cited by

  1. Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-A.2014.38.6.669
  2. Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1161
  3. An Effective Approach of Equivalent Elastic Method for Three-Dimensional Finite Element Analysis of Ceramic Honeycomb Substrates vol.35, pp.3, 2011, https://doi.org/10.3795/KSME-A.2011.35.3.223
  4. Static and Dynamic Analysis and Optimization Design of 40,000-rpm High-Speed Spindle for Machine Tools vol.37, pp.1, 2013, https://doi.org/10.3795/KSME-A.2013.37.1.105