The Investigation of Gene Flows in Artificial Pollination between GM Rice and its Wild Relatives by RAPD Analysis

RAPD PCR에 의한 GM벼의 야생 근연종 벼로의 유전자 전이 분석법

  • Kim, Yoon-Sik (Plant Cell Biotechnology Lab., Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hyun-Soon (Plant Cell Biotechnology Lab., Korea Research Institute of Bioscience and Biotechnology) ;
  • Joung, Hyouk (Plant Cell Biotechnology Lab., Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeon, Jae-Heung (Plant Cell Biotechnology Lab., Korea Research Institute of Bioscience and Biotechnology)
  • 김윤식 (한국생명공학연구원 식물유전체연구센터) ;
  • 김현순 (한국생명공학연구원 식물유전체연구센터) ;
  • 정혁 (한국생명공학연구원 식물유전체연구센터) ;
  • 전재흥 (한국생명공학연구원 식물유전체연구센터)
  • Published : 2006.10.01

Abstract

In recent years, there has been increasing concerns in gene flow from GM crops to wild or weedy relatives as a potential risk in the commercialization of GM crops. To access the possibility of the environmental impacts by GM rice, small-scale experiments of gene transfer were carried out. Herbicide and drought stress resistant GM rice and non-GM rice Nakdongbyeo, wild rice Oryza nivara, and weedy rice Sharebyeo were used for artificial pollination experiments and bar gene was used as a tractable marker after pollination. The harvested putative hybrid seeds after artificial pollination were germinated and true hybrid plants were selected by basta treatment. The hybrid plants were verified again by PCR amplification of bar and trehalose-6-phosphate phosphatase (TPP) genes and RAPD PCR analysis.

최근 GMO 작물의 재배, 생산이 날로 늘어나며 GMO 작물이 환경에 미칠 수 있는 많은 가능성들이 대두되고 있다. 특히 GMO 작물과 야생종과의 자연교잡에 의한 유전자 전이로, 잡초화의 문제점이 제기되며 생태계의 변화 및 파괴의 위험성이 우려되고 있다. 본 실험에서는 GM벼와 야생 및 근연종 사이의 교잡가능성 및 유전자 전이율을 조사하기 위한 유전자 이동의 분석 체계를 확립하고자 하였다. 벼의 개화시기에 GM벼와 야생 및 근연종 간의 인공교배 후 수확한 교잡 추정 종자를 발아시켜서 제초제를 처리하여 교잡종자를 선별하였다. 또한 GM 벼 및 야생 근연종벼들 간의 RAPD PCR 분석을 통해 선별한 marker를 사용하여 낙동 교잡벼와 샤레 교잡벼가 GM 벼와 교배된 식물체임을 확인하였다. PCR 분석을 수행한 결과 GM벼에서 도입된 trehalose-6-phosphate phosphatase (TPP) 유전자와 선별marker로 사용된 bar유전자가 GM벼 뿐만 아니라 샤레 교잡벼에도 존재하였으며, 결과적으로 GM벼의 bar 및 tpp 유전자가 잡초성벼인 샤레 교잡벼에 전이되었음을 검증할 수 있었다.

Keywords

References

  1. Conner, A. J., T. R. Glare and J. P. Nap. 2003. The release of genetically modified crops into the environment. The Plant Jour. 33: 19-46 https://doi.org/10.1046/j.0960-7412.2002.001607.x
  2. D'Agnolo, G. 2005. GMO: Human health risk assessment. Vet. Res. Commun. 2: 7-11
  3. Dale, P. J., B. Clarke and E. M.G. Fontes. 2002. Potential for the environmental impact of transgenic crops. Nature Biotech. 20: 567-574 https://doi.org/10.1038/nbt0602-567
  4. Daniell H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotech. 20: 581-586 https://doi.org/10.1038/nbt0602-581
  5. Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15
  6. Ferber, D. 1999. Risks and benefit: GMcrops in the cross hairs. Science. 286: 1622-1666
  7. Jang, I. C., S. J. Oh, J. S. Seo, W. B. Choi, S. I. Song, C. H. Kim, Y. S. Kim, H. S. Seo, Y. D. Choi, B. H. Nahm and J. K. Kim. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6 phosphate synthase and trehalose- 6 phosphate phsphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol. 131: 516-524 https://doi.org/10.1104/pp.007237
  8. Kling, J. 1996. Agricultural Ecology: Could Transgenic Supercrops One Day Breed Superweeds? Science 274: 180–181 https://doi.org/10.1126/science.274.5285.181
  9. Lorenz, M. G. and J. Sikorski. 2000. The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri. Microbiol. 146: 3081-3090 https://doi.org/10.1099/00221287-146-12-3081
  10. Monastra, G. and L. Rossi. 2003. Transgenic foods as a tool for malnutrition elimination and their impact on agricultural systems. Rivista di Biologia. Biology Forum pp. 363-384
  11. Nielsen, K. M., A. M. Bones, K. Smalla and van J. D. Elass. 1998. Horizontal gene transfer from transgenic plants to terrestrial bacteria- a rare events? FEMS Microbiol. Rew 22: 79-103 https://doi.org/10.1111/j.1574-6976.1998.tb00362.x
  12. Nosey, J. E., L. S. Rayor and M. E. Carter. 1999. Transgenic pollen harms monarch larvae. Nature 399: 214-214
  13. Roger, M. A., L. Lamond, C. Preston, S. B. Powles and R. T. Roush. 2002. Pollen-mediated movement of herbicide resistance between commercial calnola fields. Science 296:2386-2388 https://doi.org/10.1126/science.1071682
  14. Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, S. H. Kim, J. K. Kim, J. S. Lee and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Eschericha coli. Appl. Environ. Microbiol. 66: 2484-2490
  15. Snow, A. A. 2002. Transgenic crops – Why gene flow matters. Nature Biotech 20: 542-542
  16. Spok, A., H. Gaugitsch, S. Laffer, G. Pauli, H. Saito, H. Sampson, E. Sibanda, W. Thomas, M. van Hage and R. Valenta. 2005. Suggestions for the assessment of the allergenic potential of genetically modified organisms. Int. Arch. Allergy Immunol. 137(2): 167-80 https://doi.org/10.1159/000086315