Cytotoxic Effects of Some Transition Metals, Nickel(II), Copper(II) and Zinc(II), with 3.6-bis(2'-pyridyl)pyridazines Complexes

몇 가지 전이금속, Ni(II), Cu(II) 및 Zn(II) 3,6-bis(2'-pyridyl)pyridazine 착 화합물들의 세포 독성효과

  • Kwon, Byung-Mok (Korea Research Institute of Chemical Technology, Protein Regulator R.U.) ;
  • Lee, Chong-Ock (Screening and Toxicology Research Center, Korea research Institute of Chemical Technology) ;
  • Choi, Sang-Un (Screening and Toxicology Research Center, Korea research Institute of Chemical Technology) ;
  • Sung, Nack-Do (Research Center for Transgenic Cloned Pigs, Chungnam National University)
  • 권병목 (생명공학연구소 단백질조절연구부) ;
  • 이정옥 (한국화학연구소 스크리닝연구부) ;
  • 최상운 (한국화학연구소 스크리닝연구부) ;
  • 성낙도 (충남대학교 형질전환복제돼지연구센터)
  • Published : 2006.03.31

Abstract

A series of cytotoxic activities $(ED_{50})$ in vitro against six human cancers (lung cancer, uterine cancer, skin cancer, brain cancer, colon cancer and adenocarcinoma) and their seventeen cell lines of 3,6-bis(2'-pyridyl)pyridazine, 1, 3,6-bis-(6'-methyl-2'-pyridyl)pyridazine, 2 and their transition metal, Ni(II), Cu(II) and Zn(II) complexes, $3{\sim}6$ were measured. Particularly, the results revealed that the cytotoxic activities against the brain cancer cell line (SNB-19) and the colon cancer cell line (SW62) of bis- [3,6-bis-(6'-methyl-2'-pyridyl)pyridazine-$k^2N^2,N^3$]chlorocopper(II)perchlorate, 4 were shown to be higher than that of the first generation anticancer agent, Cis-platin.

6종의 인체 암(폐암, 피부암, 결장암, 자궁암, 선암 및 뇌암)과 그의 17가지 세포주들에 대한 리간드 화합물 3,6-bis(2'-pyridyl)pyridazine(1) 과 3,6-bi s(6'-methyl-2'-pyridyl)pyridazine(2) 그리고 그들의 전이금속(Ni(II), Cu(II) 및 Zn(II)) 착 화합물들 $(3{\sim}6)$ 세포독성을 각각 측정하였다. 그 결과, 특히 Cu(II) 착 화합물, bis-[3,6-bis-(6'-methyl-2'-pyridyl)pyridazine-$k^2N^2,N^3$]chlorocopper(II)perchlorate (4)는 뇌암(SNB-19)과 결장암(SW-62) 세포주에 대하여 제1세대 항암제인 Cis-platin보다 높은 세포독성을 나타내었다.

Keywords

References

  1. Rosenberg, B. (1978) Platinum complexes for the treatment of cancer. Interdisc. Sci. Rev. 3, 134-147 https://doi.org/10.1179/030801878791926119
  2. Marzano, C., Trevisan, A., Giovagnini, L. and Fregona, D. (2002) Synthesis of new platinum(II) complex: anticancer activity and nephrotoxicity in Vitro. Toxicology in Vitro. 16, 413-419 https://doi.org/10.1016/S0887-2333(02)00022-X
  3. Kleinerman, E. S., Zwelling, L. A. and Muchmore, A. V. (1980) Enhancement of naturally ocuring human spontaneous monocyte-mediated cytotoxicity by cis-diaminedichloroplatinum (II). Cancer Res. 40, 3099-3102
  4. Lichtenstein, A. K. and Pendde, D. (1986) Enhancement of natural killer cytotoxicity by cis-diaminedichloroplatinum(II) in vivo and in vitro. Cancer Res. 46, 639-644
  5. Paxton, R. J., Beatty, B. G., Hawthorne, M. F., Varadarajan, A., Williams, L. E., Curtis, F. L., Knobler, C. B., Beatty, J. D. and Shively, J. E. (1991) A transition metal complex (Venus flytrap cluster) for radioimmunosdetection and radioimmuno-therapy. Proc. Natl. Acad. Sci. USA 88, 3387-3391
  6. Shrivastav, A., Singh, N. K. and Singh, S. M. (2002) Synthesis, characterization and antitumor studies of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of N-salicyloyl-N'-O-hydroxythiobenzhydrazide. Bioorg. Med. Chem. 10, 887-895 https://doi.org/10.1016/S0968-0896(01)00373-X
  7. Sung, N. D., Seo, J. S., Rosemary, C. H. and Chin, J. (1996) Structure and reactivity of a dinuclear cobalt(III) complex with a bridging phosphate monoester. Inorg. Chem. 35, 7472-7473 https://doi.org/10.1021/ic9603924
  8. Sung, N. D., Seo, J. S., Rosemary, C. H., Williams, D. and Chin, J. (1998) Structure and reactivity of a dinuclear cobalt(III) complex with peroxide and phosphate diester analogues bridging the metal ions. J. Am. Chem. Soc. 120, 9943-9944 https://doi.org/10.1021/ja9811905
  9. Liu, C., Wang, M., Zhang, T. and Sun, H. (2004) DNA hydrolysis promoted by di- and multi-nuclear metal complexes. Coordination Chem. Rev. 248, 147-168 https://doi.org/10.1016/j.cct.2003.11.002
  10. Williams, N. H. (2004) Models for biological phosphoryl transfer. Biochem. Biophys. Acta 279-287
  11. Cowan, J. A. (2001) Chemical nucleases. Curr. Opin. Chem. Biol. 5, 634-642 https://doi.org/10.1016/S1367-5931(01)00259-9
  12. Sung, N. D., Yun, K. S., Kim, J. G. and Suh, I. H. (2000) $\mu$-Aqua-pentaaqua[$\mu$-3,6-bis(6-methyl-2- pyridyl)pyridazine] chlorodinickel(II) trichloride trihydrate. Acta. Cryst. C56, e370-e371
  13. Choi, K. Y., Sung, N. D., Yun, K. S., Park, Y. S., Kim, J. G. and Suh, I. H. (2001) Bis[3,6-bis(6'-methyl-2'-pyridyl) pyridazine-$k^{2}N^{2}N^{3}$]chlorocopper(II) perchlorate. Acta. Cryst. C57, 47-48
  14. Kim, M. J., Lee, J. H., Lee H. J. and Sung, N. D. (1999) The crystal structure of [3,6-bis(6'-methyl-2'-pyridyl)pyridazine] $ZnCI_{2},C_{16}H_{16}N_{4}.ZnCI_{2}$. Kor. J. Crystall. 10, 119-124
  15. Sung, N. D., Yun, K. S., Kim, T. Y., Choi, K. Y., Suh, M., Kim, G. J., Suh, I. H. and Chin, J. (2001) Synthesis and characterization of a novel tetranuclear nickel(II) complex: [$Ni_{4}({\mu}-OH)_{2}({\mu}-dppn)_{4}({\mu}-H_{2}O)_{2}](Cl)(ClO_{4})_{5}\;9H_{2}O$, (dppn=3,6-bis(2'-pyridyl)pyridazine). Inorg. Chem. Comm. 4, 377-380 https://doi.org/10.1016/S1387-7003(01)00195-2
  16. Choi, S. U., Choi, E. J., Kim, K. H., Kim, N. Y., Kwon, B. M., Kim, S. U., Bok, S. H., Lee, S. Y. and Lee, C. O. (1996) Cytotoxicity of trichlorothecenes to human solid tumor cells in vitro. Arch. Pharm. Res. 19, 6-11 https://doi.org/10.1007/BF02976812
  17. TOPKAT (The open practical knowledge acquisition toolkit). Accelrys Inc., Web: http:/www.accelrys.com
  18. Sung, N. D. and Yoon, K. S. (2005) The roles of metal ions and water molecules in the hydrolysis of bis(p-nitrophenyl)-phosphate as a DNA model catalyzed by dinuclear Ni(II) complex. J. Kor. Soc. Appl. Biol. Chem. 48, 115-119
  19. Sung, N. D., Kim, D. W., Kwon, B. M., Kim, T. Y. and Suh, I. H. (2000) Biological activities of some organometallic compounds as artificial nuclease. Kor. J. Pestic. Sci. 4, 32-37
  20. Rosenberg, B. (1980) In Nucleic-Metal Ion Interactions: Platium Complexes for the Treatment of Cancer. Spiro, T. G. (ed.). Ch. 1., John Wiley & Sons, New York
  21. Dugas, H. (1989) In Bioorganic Chemistry: A chemical approach to enzyme action (3rd Ed.). Ch. 3, Springer-Verlag, New York. pp. 128-132
  22. Wall. M., Hynes, R. C. and Chin, J. (1993) Double Lewis acid activition in phosphate diester clavage, Angew, Chem. Int. Ed. Engl. 32, 1633-1635 https://doi.org/10.1002/anie.199316331
  23. Sung, N. D. (1998) The transition state analog for metal catalized hydrolysis an ester, Agric. Chem. Biotech. 4, 410-411
  24. Fujita, T. (1983) In Progress in Physical Organic Chemistry Substitution effects in the partition coefficient of disubstituted benzenes: Bidirectional Hammett-type relationships. Vol. 14, Taft, R. W.(ed.). John Wiley & Sons., Toronto. pp. 75-113
  25. Sherman, S. E. and Lipoard, S. J. (1987) Structural aspects of plantinum anticancer drug interactions with DNA. Chem. Rev. 87, 1153-1181 https://doi.org/10.1021/cr00081a013