DOI QR코드

DOI QR Code

Antioxidant and Antimicrobial Activities of Extracts from Sarcodon aspratus

능이버섯(Sarcodon aspratus) 추출물의 항산화성과 항균성

  • 윤경영 (영남대학교 식품영양학과) ;
  • 이숙희 (영남대학교 식품영양학과) ;
  • 신승렬 (대구한의대학교 한방식품조리영양학부)
  • Published : 2006.08.30

Abstract

The antioxidative and antimicrobial activities were determined on the mushroom (Sarcodon aspratus) extracts in order to find out new food functional components. The antioxidative activities of water and ethanol extracts from the Sarcodon aspratus were measured by peroxide values (POV), electron-donating ability (EDA) using 1,1-diphenyl-2-picryl hydroxyl (DPPH), nitrite-scavenging ability and superoxide dismutase-like activity (SODA) by pyrogallol. The antioxidative activity of the ethanol extract measured by POV was higher than those of the water extract, BHT, and ${\alpha}-tocopherol$. The EDA of the water extract and ethanol extract using DPPH showed the highest values of 76.94% and 73.06%, respectively. The nitrite-scavenging abilities (pH 1.2, 1,000 ppm) of the water and ethanol extracts were 72.61% and 62.69%, respectively, and the nitrite-scavenging ability of the water extract was higher than that of the ethanol extract in all pH values. The SODA of the ethanol extract was higher than that of the water extract. The Sarcodon aspratus extracts had antimicrobial effects on Listeria monocytogenes and Staphylococcus aureus.

본 연구는 식품, 약용, 유전자원 등 풍부한 가치를 가지고 있는 능이버섯에 대하여 기능성 식품의 개발타당성을 입증하기 위하여 능이버섯을 열수와 에탄올로 추출하고 생리활성효과를 측정하였다. 과산화물가(POV)는 항산화제로 사용되는 ${\alpha}-tocopherol$과 BHT보다 능이버섯 에탄올추출물이 높은 항산화 작용을 나타내었다. 능이버섯 추출물의 전자공여능을 측정한 결과는 능이버섯 추출물의 농도에 비례하여 전자공여능이 증가하였으며, 열수추출물이 에탄올추출물보다 전자공여능이 높았다. 능이버섯 추출물의 pH에 따른 아질산염 분해능과 농도에 따른 아질산염 분해능을 조사한 결과 추출물의 농도가 증가할수록 아질산염 분해능이 증가하였고, 열수추출물이 에탄올추출물보다 분해작용이 좀 더 높게 나타났다. 능이버섯의 SOD 유사활성은 에탄올추출물이 열수추출물보다 높게 나타내었다. 추출물에 대한 항균활성은 6종류의 식중독세균 Bacillus subtilis KCTC 1659, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 13565, Gram 음성균인 Escherichia coli O157:H7 ATCC 43895, Salmonella Typhimurium ATCC 7988, Shigella sonnei KCTC 2009을 실험균주로 사용하였다. 능이버섯의 항균활성은 열수추출물과 에탄올추출물 모두 3%, 5% 농도에서 양성균인 L. monocytogenes와 S. aureus에 대하여 항균활성을 나타내었다.

Keywords

References

  1. Ames BN. 1970. Identification of environmental chemicals causing mutation and cancer. Science 204: 589-592
  2. Hammond B, Kontos A, Hess ML. 1985. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can J Physion Pharmacol 63: 173-187 https://doi.org/10.1139/y85-034
  3. Ames BN, Cahcart R, Schwiers E, Hochstein P. 1981. Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer. Proc Natl Acad Sci USA 78: 6858-6862
  4. Tsuda T, Watanabw M, Ohshima K, Norinobu S, Choi SW, Kawakishi S, Osawa T. 1994. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-$\beta$-D-glucoside and cyanidin. J Agic Food Chem 42: 2407-2410 https://doi.org/10.1021/jf00047a009
  5. Ma SJ. 1983. Effects of the substances extracted from dried mushroom (Lentinus edodes) by several organic solvents on the stability of fat. J Food Sci 15: 150-154
  6. Chung SY, Kim SH, Kim HS, Kang JS, Cheong HS, Kim GJ, Kim HJ. 1990. Effects of water soluble extract of Ganoderma lucidum, kale juice and sodium dextrothyroxine on hormone and lipid metabolism in hypercholesterolemic rats 1. Concentrations of triiodothyronine, thyroxine, blood sugar and lipid composition in serum. J Korean Soc Food Nutr 19: 381-386
  7. Kim GJ, Kim HS, Chung SY. 1992. Effects of varied mushroom on lipid compositions in dietary hypercholesterolemic rats. J Korean Soc Food Nutr 21: 131-135
  8. Kariya K, Nakamura K, Nomoto K, Matama S, Saigenji K. 1992. Mimicking of superoxide dismutase activity by protein-bound polysaccharide of Coriolus versicolor QUEL, and oxidative stress relief for cancer patients. Mol Biotechnol 4: 40-46
  9. Matsuzawa T, Sano M, Tomita I, Saitoh H, Ikekawa T. 1997. Studies on antioxidants of Hypsizigus marmoreus. I. Effects of Hypsizigus marmoreus for antioxidants activities of mice plasma. Yarugaru Zasshi 117: 623-628 https://doi.org/10.1248/yakushi1947.117.9_623
  10. Lee GD, Chang HG, Kim HK. 1997. Antioxidative and nitrite-scavenging activities of edible mushrooms. Kor J Food Sci Technol 29: 432-436
  11. Kavanagh F, Hervey A, Robbins WJ. 1949. Antibiotic substances from basidiomycetes IV. Marasmius conigenus. Proc Natl Acad Sci USA 35: 343-351
  12. Takeuchi T, Iinuma H, Iwanaga J, Takahashi S, Takita T, Umezawa H. 1969. Coriolin, a new basidiomycetes antibiotic. J Antibiotics 22: 215-217 https://doi.org/10.7164/antibiotics.22.215
  13. Anke T, Oberwinkler F, Steglish W, Hofle G. 1977. The striatins-new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.) Willd. J Antibiot 30: 221-225 https://doi.org/10.7164/antibiotics.30.221
  14. Anke T, Hecht HJ, Schramm G, Steglich W. 1979. Antibiotics from basidiomycetes IX. Oudemansin, an antifungal antibiotic from Oudemansiella mucida (Schrader ex Fr.) Hoehnel (agaricales). J Antibiot 32: 1112-1117 https://doi.org/10.7164/antibiotics.32.1112
  15. Umezawz H, Takeuchi T, Iinuma H, Ito M, Ishizuka M, Kurakata Y, Nakamura T, Obayashi A, Tanabe O. 1975. A new antibiotic, calvatic acid. J Antibiot 28: 87-90 https://doi.org/10.7164/antibiotics.28.87
  16. Stransky K, Semerdzieva M, Otmar M, Prochazka Z, Budesinsky M, Ubik K, Kohoutova J, Streinz L. 1992. Antifungal antibiotic from the mushroom Agrocybe aegerita (Brig) Sing. Collect Czech Chem Commum 57: 590-603 https://doi.org/10.1135/cccc19920590
  17. Lauer U, Anke T. 1989. Antibiotics from Basidiomycetes XXXI. Aleurodiscal: An antifungal sesterterpenoid from Aleurodiscus mirabilis (Berk. & Curt.) Hohn. J Antibiot 42: 875-889 https://doi.org/10.7164/antibiotics.42.875
  18. Hirosue T, Kawai H, Hosogai Y. 1978. On the antioxidatives activities of crude drugs. Nippon Shokuhin Kogyo Gakkaishi 25: 691-694 https://doi.org/10.3136/nskkk1962.25.691
  19. Asakawa T, Matsushita S. 1980. A colorimetric microdetermination of peroxide value utilizing aluminium chloride as the catalyst. Lipids 15: 965-967 https://doi.org/10.1007/BF02534423
  20. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  21. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  22. Marklund S, Marklund G. 1975. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismmutase. Eur J Biochem 47: 468-474
  23. Kang YM, Kim S, Yun HJ, Nam SH. 2004. Antioxidative activity of the extracts from browned oak mushroom (Lentinus edodes) with unmarketable quality. Korean J Food Sci Technol 36: 648-654
  24. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenol compounds. Korean J Food Sci Technol 28: 232-239
  25. Lee GD, Chang HG, Kim HK. 1997. Antioxidative and nitrite-scavenging activities of edible mushrooms. Korean J Food Sci Technol 29: 432-436
  26. Kim JW, Moon BS, Park YM, Yoo NH, Ryoo IJ, Chinh NT, Yoo ID, Kim JP. 2005. Structures and antioxidant activity of diketopiperazines isolated from the mushroom Saccodon aspratus. J Koran Soc Appl Biol Chem 48: 93-97
  27. Chi HY, Kim KH, Kong WS, Kim Sl, Kim JA, Chung IM, Kim JT. 2005. Antioxidant activity and total phenolic compounds of P. eryngii spp. extracts. Korean J Crop Sci 50: 216-219
  28. Kim HJ, Bae JT, Lee JW, Hwang Bo MH, Im HG, Lee IS. 2005. Antioxidant activity and inhibitive effects on human leukemia cells of edible mushrooms extracts. Korean J Food Preserv 12: 80-85
  29. Kong WS, Kim SH, Park JS, Hahn SJ, Chung IM. 2004. Evaluation and selection of antioxidative activities of 80 collected and mated mushroom strains. Food Sci Biotechnol 13: 689-693
  30. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984
  31. Lee YS, Joo EY, Kim NW. 2005. Antioxidant activity of extracts from the Lespedeza bicolor. Korean J Food Preserv 12: 75-79
  32. 한대석, 김석중. 1994. SOD 유사활성물질과 기능성식품의 개발. 식품기술 7: 41-49
  33. Turkoglu A, Duru ME, Mercan N, Kivra I, Gezer K. 2006. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem in press
  34. Kim BK, Shung KS. 1980. Studies on the constituents of the higher fungi of Korea. An antibiotic component of Cryptoporus volvatus (Pk.) Hubb. Kor J Mycol 8: 176

Cited by

  1. Physiological activitive of Grifola frondosa by log cultivation and bottle cultivation vol.13, pp.3, 2015, https://doi.org/10.14480/JM.2015.13.3.185
  2. Optimization of Extraction Conditions of Sarcodon aspratus by Response Surface Methodology vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.464
  3. Free Radical Scavenging Activity and Protective Effect against H2O2-Induced Stress in Neuronal Cells of Enzymatic Extracts from Sarcodon aspratus vol.19, pp.2, 2011, https://doi.org/10.7783/KJMCS.2011.19.2.077
  4. Physiological Properties of Sarcodon aspratus Extracts by Ethanol Concentration vol.43, pp.5, 2014, https://doi.org/10.3746/jkfn.2014.43.5.656
  5. 국내 균근성 버섯류 추출물의 항산화능 및 영양성분 비교 vol.18, pp.2, 2020, https://doi.org/10.14480/jm.2020.18.2.164