DOI QR코드

DOI QR Code

안쪽으로 굽어지는 자엽초 박편의 옥신 반응을 촉진하는 옥수수(Zea mays) 내생물질의 탐색

Screening of Endogenous Maize (Zea mays) Substances Enhancing Auxin-induced Inward Curvature in Coleoptilar Slits

  • 박웅준 (단국대학교 분자생물학과, 나노센서 바이오텍 연구소, BK2l RNA 전문인력양성사업팀)
  • Park, Woong-June (Graduate Program for RNA Biology, Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • 발행 : 2006.08.30

초록

옥수수(Zea mays) 자엽초 박편을 분리하여 완충용액에 띄워 배양하면 조직 내부와 외부 사이의 장력 차이에 의하여 밖으로 굽어진다. 그러나 외부에서 옥신을 처리하면 안으로 굽어지는 반응이 나타나는데, 그 반응 정도는 옥신 농도에 따라 변화하였다. 본 연구에서는 옥신에 의하여 자엽초 박편이 안으로 굽어지는 현상을 옥신과 함께 작용하는 물질들을 선별하기 위한 실험에 이용하였다. 옥수수 자엽초의 메탄올 추출물로부터, 옥신에 의해 안으로 굽어지는 자엽초 박편의 반응을 촉진하는 활성을 발견하였다. 이러한 촉진 활성은 에너지원과 관련된 현상은 아니었다. 활성물질은 pH 10과 같은 높은 pH에서도 $C_{18}$ 컬럼에 흡착되어 메탄올로 용리되었으며, 50% 메탄올과 80% 메탄올에 의하여 용리되는 두 가지 물질을 발견하고 각각 Curvature-Enhancing Factor-1 (CEF-1)과 Curvature-Enhancing Factor-2 (CEF-2)라 명명하였다. 그중 CEF-2의 HPLC를 이용한 분리 조건이 확립되었다.

When thin slits (e.g., $1mm{\times}10mm$) of maize (Zea mays) coleoptiles were floated on a buffer, they spontaneously curved outward because of unbalanced tissue tension between inner and outer faces. Exogenously applied auxin induced inward curvature of the thin strip of the maize coleoptile in a dose-dependent manner. This bioassay system was used to screen endogenous substances that work together with auxin. In methanol extract of maize coleoptiles including the leaves inside, Active fractions that promote the auxin-induced inward curvature of maize coleoptile slices were found. The curvature-enhancing activity of the extract was not related to energy supply. The active substances were adsorbed to $C_{18}$ cartridges even at pH 10 and eluted in two fractions by 50% and 80% methanol. These substances were named as Curvature-Enhancing Factor-1 (CEF-1) and Curvature-Enhancing Factor-2 (CEF-2), respectively. The CEF-2 was resolved on a reversed phase $C_{18}$ column by HPLC.

키워드

참고문헌

  1. Kefford, N. P. 1955a. The growth substances separated from plant extracts by chromatography I. J. Exp. Bot. 6, 129-151 https://doi.org/10.1093/jxb/6.1.129
  2. Kefford, N. P. 1955b. The growth substances separated from plant extracts by chromatography II. The coleoptile and root elongation properties of the growth substances in plant extracts. J. Exp. Bot. 6, 245-255 https://doi.org/10.1093/jxb/6.2.245
  3. Letham, D. S. 1978. Naturally-occuring plant growth regulators other than the principal hormones of higher plants. pp. 349-417, In Letham, D. S., P. B. Goodwin and T, J, V. Higgins (eds), Phytohormones and related compounds: A comprehensive treatise. Elsevier/North-Holland Biomedical Press, Amsterdam
  4. Jacobs, M. and P. H. Rubery. 1988. Naturally occurring auxin transport regulators. Science 241, 346-349 https://doi.org/10.1126/science.241.4863.346
  5. Faulkner, I. L. and P. H. Rubery. 1992. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Planta 186, 618-625
  6. Hasegawa, K., S. Togo, M. Urashima, J. Mizutani, S. Kosemura and S. Yamamura. 1992. An auxin-inhibiting substance from light-grown maize shoots. Phytochem. 31, 3673-3676 https://doi.org/10.1016/S0031-9422(00)97506-X
  7. Anai, T., H. Aizawa, N. Ohtake, S. Kosemura, S. Yamamura and K. Hasekawa. 1996. A new auxin-inhibiting substance, 4-Cl-6,7-dimethoxy-2-benzoxa- zolinone, from light-grown maize shoots. Phytochem. 42, 273-275 https://doi.org/10.1016/0031-9422(95)00986-8
  8. Ricci, A., C.A. Maggiali, A. Torelli, S. Amorosi, F. Ronchini and C. Branca. 1996. Methoxylation modifies the activity of 1,2-benzisoxazole-3-acetic acid: 6,7-dimethoxy- 1,2-benzisoxazole-3-acetic acid is an auxin antagonist in cytokinin mediated processes. Plant Sci. 117, 151-158 https://doi.org/10.1016/0168-9452(96)04397-X
  9. Venis, M. A. and P. J. Watson. 1978. Naturally occurring modifiers of auxin-receptor interaction in corn: Identification as benzoxazolinones. Planta 142, 103-107 https://doi.org/10.1007/BF00385127
  10. Hoshi-Sakoda, M., K. Usui, K. Ishizuka, S. Kosemura, S. Yamamura and K. Hasegawa. 1994. Structure-activity relationships of benzoxazolinones with respect to auxin-induced growth and auxin-binding protein. Phytochem. 37, 297-300 https://doi.org/10.1016/0031-9422(94)85050-X
  11. York, W. S., A. G. Darvill and P. Albersheim. 1984. Inhibition of 2,4-dichlorophnoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol. 75, 295-297 https://doi.org/10.1104/pp.75.2.295
  12. McDougall, G. J. and S. C. Fry. 1988. Inhibition of auxin- stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 175, 412-416 https://doi.org/10.1007/BF00396348
  13. McDougall, G. J. and S. C. Fry. 1989a. Anti-auxin activity of xyloglucan oligosaccharides: the role of groups other than the terminal ${\alpha}-L-fucose$ residue. J. Exp. Bot. 40, 233- 238 https://doi.org/10.1093/jxb/40.2.233
  14. McDougall, G.J. and S.C. Fry. 1989b. Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiol. 89, 883-887 https://doi.org/10.1104/pp.89.3.883
  15. Branca, C., G. De Lorenzo and F. Cervone. 1988. Competitive inhibition of auxin-induced elongation by ${\alpha}-D-oligogalacturonides$ in pea stem segments. Physiol. Plant. 72, 499-504 https://doi.org/10.1111/j.1399-3054.1988.tb09157.x
  16. Bellincampi, D., G. Salvi, G. De Lorenzo and F. Cervone. 1993. Oligogalacturonides inhibit the formation of roots on tobacco explants. Plant J. 4, 207-213 https://doi.org/10.1046/j.1365-313X.1993.04010207.x
  17. Auxtova, O., D. Liskova, D. Kakoniova, M. Kubackova, S. Karacsonyi and L. Bilisics. 1995. Effect of galactoglucomannan- derived oligosaccharides on elongation growth of pea and spruce stem segments stimulated by auxin. Planta 196, 420-424 https://doi.org/10.1007/BF00203638
  18. McDougall, G. J. and S. C. Fry. 1990. Xyloglucan oligosaccharides promote growth and activate celullase: evidence for a role of cellulase in cell expansion. Plant Physiol. 93, 1042-1048 https://doi.org/10.1104/pp.93.3.1042
  19. Rohrig, H., J. Schmidt, R. Walden, I. Czaja, E. Miklasevics, U. Wieneke, J. Schell and M. John. 1995. Growh of tobacco protoplast stimulated by synthetic lipochitooligosaccharides. Science 269, 841-843 https://doi.org/10.1126/science.269.5225.841
  20. Campbell, J. A., A. Drake, V. W. K. Lee and S. Strother. 1995. A putative oligosaccharin growth promoter from Vitis vinifera L. primary cell walls. Ann. Bot. 75, 359-363 https://doi.org/10.1006/anbo.1995.1033
  21. Corcoran, M. R., T. A. Geissman and B. Phinney. 1972. Tannins as gibberellin antagonists. Plant Physiol. 49, 323-330 https://doi.org/10.1104/pp.49.3.323
  22. Kimura, Y., A. Tietz and S. Tamura. 1975. $Stigmasteryl-{\beta}-D-glucoside$ as an auxin synergist. Planta 126, 289-292 https://doi.org/10.1007/BF00388971
  23. Nitsch, J. P. and C. Nitsch. 1961. Growth factors in the tomato fruit. pp. 687-707, In Klein R. M. Plant Growth Regulation. Iowa State University Press, Ames
  24. Shibata, K., T. Kubota and S. Kamisaka. 1974. Isolation and chemical identification of a lettuce cotyledon factor, a synergist of the gibberellin action in inducing lettuce hypocotyl elogation. Plant Cell Physiol. 15, 191-194
  25. Sakurai, N., K. Shibata and S. Kamisaka. 1975. Stimulation of auxin-induced elongation of cucumber hypocotyl sections by dihydroconiferyl alcohol. Dihydroconiferyl alcohol inhibits indole-3-acetic acid degradation in vivo and in vitro. Plant Cell Physiol. 16, 845-855
  26. Shibata, K., T. Kubota and S. Kamisaka. 1975. Dihydroconiferyl alcohol as a gibberellin synergist in inducing lettuce hypocotyl elonagtion. An assessment of structure-activity relationships. Plant Cell Physiol. 16, 871-877
  27. Firn, R.D. 1986. Growth substance sensitivity: The need for clearer ideas, precise terms and purposeful experiments. Physiol. Plant. 67, 267-272 https://doi.org/10.1111/j.1399-3054.1986.tb02454.x
  28. Mandava, N. B. 1988. Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. 53, 453-461
  29. Dyer, M. I., A. M. Moon, M. R. Brown and D. A. Grossley. 1995. Grasshopper crop and midgut extract effects on plants: an example of reward feedback. Proc. Natl. Acad. USA 92, 5475-5478
  30. Hertel, R. 1993. A critical view on proposed hormone action: The example of auxin. pp. 1-15, In Smith C. J., J. Gallon, D. Chiatante and G. Zocchi (eds) Biochemical Mechanism of Growth Regulation. Oxford Univ. Press, Oxford