Mutant Presenilin 2 Causes Abnormality in the Brain Lipid Profile in the Development of Alzheimer's Disease

  • Nguyen, Hong Nga (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Son, Dong-Ju (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Lee, Jae-Woong (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Hwang, Dae-Youn (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Kim, Young-Kyu (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Cho, Jeong-Sik (National Institute of Toxicological Research, Korea Food and Drug Administration) ;
  • Lee, Ung-Soo (Department of Food and Biotechnology, Chungju National University) ;
  • Yoo, Hwan-Soo (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Moon, Dong-Cheul (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Oh, Ki-Wan (College of Pharmacy and CBITRC, Chungbuk National University) ;
  • Hong, Jin-Tae (College of Pharmacy and CBITRC, Chungbuk National University)
  • 발행 : 2006.10.01

초록

Mutation in the presenilin 2 (PS2mt) is known to be one of factors involved in the development of Alzheimer's disease (AD). It was recently revealed that an abnormality of lipid metabolism is a phenomenon occurring in AD. Therefore, the aim of this study was to investigate the potential relationship between the mutation of PS2 and alterations of the lipid profile within the brain. The results showed there increases in the levels of cholesterol, low density lipoprotein and triglyceride, but a decrease in the level of high density lipoprotein in brain tissues expressing mutant PS2. These findings indicated that PS2mt is involved in the abnormalities of the lipid profile, which could cause or result in the development of AD.

키워드

참고문헌

  1. Burns, M., Gaynor, K., and Olm, V., Presenilin redistribution associated with aberrant cholesterol transport enhances bamyloid production in vivo. J. Neurosci., 23, 5645-5649 (2003) https://doi.org/10.1523/JNEUROSCI.23-13-05645.2003
  2. Buxbaum, J. D., Geoghagan, N. S., and Friedhoff, L. T., Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J. Alzheimers Dis., 3, 221-229 (2001) https://doi.org/10.3233/JAD-2001-3207
  3. Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A., 101, 2070-2075 (2004)
  4. De Sarno, P., Lesort, M., Bijur, G. N., Johnson, G. V., and Jope, R. S., Cholinergic- and stress-induced signaling activities in cells overexpressing wild-type and mutant presenilin-1. Brain Res., 903, 226-230 (2001) https://doi.org/10.1016/S0006-8993(01)02428-3
  5. Deng, G., Pike, C. J., and Cotman, C. W., Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett., 397, 50-54 (1996) https://doi.org/10.1016/S0014-5793(96)01142-8
  6. Diebold, K., Michel, G., Schweizer, J., Diebold-Dorsam, M., Fiehn, W., and Kohl, B., Are psychoactive-drug-induced changes in plasma lipid and lipoprotein levels of significance for clinical remission in psychiatric disorders- Pharmacopsychiatry, 31, 60-67 (1998) https://doi.org/10.1055/s-2007-979300
  7. Ehehalt, R., Keller, P., and Haass, C., Amyloidogenic processing of the Alzheimer b-amyloid precursor protein depends on lipid rafts. J. Cell Biol., 60, 113-123 (2003)
  8. Fassbender, K., Simons, M., and Bergmann, C., Simvastatin strongly reduces levels of Alzheimer's disease $\beta$-amyloid peptides Ab42 and Ab40 in vitro and in vivo. Proc. Natl. Acad .Sci. USA, 98, 5856-5861 (2001)
  9. Galbete, J. L., Martin, T. R., Peressini, E., Modena, P., Bianchi, R., and Forloni, G., Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem. J., 348, 307-313 (2000) https://doi.org/10.1042/0264-6021:3480307
  10. Hwang, D. Y., Chae, K. R., Kang, T. S., Hwang, J. H., Lim, C. H., Kang, H. K., Goo, J. S., Lee, M. R., Lim, H. J., Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W., Paik, S. G., Cho, J. S., and Kim, Y. K., Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J., 16, 805-813 (2002) https://doi.org/10.1096/fj.01-0732com
  11. Ignatius, M. J., Gebicke-Harter, P. J., and Skene, J. H., Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. U.S.A., 83, 1125-1129 (1986)
  12. Irizarry, M. C., Deng, A., Lleo, A., Berezovska, O., Von Arnim, C. A., Martin-Rehrmann, M., Manelli, A., LaDu, M. J., Hyman, B. T., and Rebeck, G. W., Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein. J. Neurochem., 90, 1132-1143 (2004) https://doi.org/10.1111/j.1471-4159.2004.02581.x
  13. Janicki, S. and Monteiro, M. J., Increased apoptosis arising from increased expression of the Alzheimer's diseaseassociated presenilin-2 mutation (N141I). J. Cell Biol., 139, 485-495 (1997) https://doi.org/10.1083/jcb.139.2.485
  14. Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A., Statins and the risk of dementia. Lancet, 356, 1627-1631 (2000) https://doi.org/10.1016/S0140-6736(00)03155-X
  15. Koudinov, A. R., Berezov, T. T., and Koudinov, N. V., The levels of soluble amyloid beta in different high density lipoprotein subfractions distinguish Alzheimer's and normal aging cerebrospinal fluid: implication for brain cholesterol pathology? Neurosci. Lett., 314, 115-118 (2001) https://doi.org/10.1016/S0304-3940(01)02263-7
  16. Koudinov, A. R., Berezov, T. T., and Kumar, A., Alzheimer's amyloid b interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin. Chim. Acta., 270, 75-84 (1998) https://doi.org/10.1016/S0009-8981(97)00207-6
  17. Lee, S. Y., Hwang, D. Y., Kim, Y. K., Lee, J. W., Shin, I. C., Oh, K. W., Lee, M. K., Lim, J. S., Yoon, do. Y., Hwang, S. J., and Hong, J. T., PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase- 3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J., 20,151-153 (2006) https://doi.org/10.1096/fj.05-4017fje;1
  18. Michikawa, M., Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer's disease? J. Neurosci. Res., 72, 141-146 (2003) https://doi.org/10.1002/jnr.10585
  19. Mori, M., Nakagami, H., Morishita, R., Mitsuda, N., Yamamoto, K., Yoshimura, S., Ohkubo, N., Sato, N., Ogihara, T., and Kaneda, Y., N141I mutant presenilin-2 gene enhances neuronal cell death and decreases bcl-2 expression. Life Sci., 70, 2567-2580 (2002) https://doi.org/10.1016/S0024-3205(02)01514-X
  20. Pappolla, M. A., Bryant-Thomas, T. K., and Herbert, D., Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61, 199- 205 (2003) https://doi.org/10.1212/01.WNL.0000070182.02537.84
  21. Refolo, L. M., Pappolla, M. A., and La Francois, J., A cholesterol-lowering drug reduces b-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis., 8, 890-899 (2001) https://doi.org/10.1006/nbdi.2001.0422
  22. Refolo, L. M., Malester, B., La Francois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., and Pappolla, M. A., Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis., 7, 321-331 (2000) https://doi.org/10.1006/nbdi.2000.0304
  23. Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., and Hartmann, T., Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci., 22, 1679-1689 (2002) https://doi.org/10.1523/JNEUROSCI.22-05-01679.2002
  24. Sawamura, N., Morishima-Kawashima, M., Waki, H., Kobayashi, K., Kuramochi, T., Frosch, M. P., Ding, K., Ito, M., Kim, T. W., Tanzi, R. E., Oyama, F., Tabira, T., Ando, S., and Ihara, Y., Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J. Biol. Chem., 275, 27901-27908 (2000)
  25. Shie, F. S., Jin, L. W., and Cook, D. G., Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 213, 455-459 (2002)
  26. Simons, K. and Ikonen, E., How cells handle cholesterol. Science, 290, 1721-1726 (2000) https://doi.org/10.1126/science.290.5497.1721
  27. Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I., and Small, D. H., Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J. Neurochem., 84, 471-479 (2003) https://doi.org/10.1046/j.1471-4159.2003.01552.x
  28. Tan, Z. S., Seshadri, S., and Beiser, A., Plasma total cholesterol level as a risk factor for Alzheimer's disease: the Framingham study. Arch. Intern. Med., 163, 1053-1057 (2003) https://doi.org/10.1001/archinte.163.9.1053
  29. Wahrle, S., Das, P., and Nyborg, A. C., Cholesterol-dependent g-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis., 9, 11-23 (2002) https://doi.org/10.1006/nbdi.2001.0470
  30. Wellington, C. L., Cholesterol at the crossroads: Alzheimer's disease and lipid metabolism. Clin. Genet., 66, 1-16 (2004) https://doi.org/10.1111/j.0009-9163.2004.00280.x