참고문헌
- Burns, M., Gaynor, K., and Olm, V., Presenilin redistribution associated with aberrant cholesterol transport enhances bamyloid production in vivo. J. Neurosci., 23, 5645-5649 (2003) https://doi.org/10.1523/JNEUROSCI.23-13-05645.2003
- Buxbaum, J. D., Geoghagan, N. S., and Friedhoff, L. T., Cholesterol depletion with physiological concentrations of a statin decreases the formation of the Alzheimer amyloid Abeta peptide. J. Alzheimers Dis., 3, 221-229 (2001) https://doi.org/10.3233/JAD-2001-3207
- Cutler, R. G., Kelly, J., Storie, K., Pedersen, W. A., Tammara, A., Hatanpaa, K., Troncoso, J. C., and Mattson, M. P., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A., 101, 2070-2075 (2004)
- De Sarno, P., Lesort, M., Bijur, G. N., Johnson, G. V., and Jope, R. S., Cholinergic- and stress-induced signaling activities in cells overexpressing wild-type and mutant presenilin-1. Brain Res., 903, 226-230 (2001) https://doi.org/10.1016/S0006-8993(01)02428-3
- Deng, G., Pike, C. J., and Cotman, C. W., Alzheimer-associated presenilin-2 confers increased sensitivity to apoptosis in PC12 cells. FEBS Lett., 397, 50-54 (1996) https://doi.org/10.1016/S0014-5793(96)01142-8
- Diebold, K., Michel, G., Schweizer, J., Diebold-Dorsam, M., Fiehn, W., and Kohl, B., Are psychoactive-drug-induced changes in plasma lipid and lipoprotein levels of significance for clinical remission in psychiatric disorders- Pharmacopsychiatry, 31, 60-67 (1998) https://doi.org/10.1055/s-2007-979300
- Ehehalt, R., Keller, P., and Haass, C., Amyloidogenic processing of the Alzheimer b-amyloid precursor protein depends on lipid rafts. J. Cell Biol., 60, 113-123 (2003)
-
Fassbender, K., Simons, M., and Bergmann, C., Simvastatin strongly reduces levels of Alzheimer's disease
$\beta$ -amyloid peptides Ab42 and Ab40 in vitro and in vivo. Proc. Natl. Acad .Sci. USA, 98, 5856-5861 (2001) - Galbete, J. L., Martin, T. R., Peressini, E., Modena, P., Bianchi, R., and Forloni, G., Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem. J., 348, 307-313 (2000) https://doi.org/10.1042/0264-6021:3480307
- Hwang, D. Y., Chae, K. R., Kang, T. S., Hwang, J. H., Lim, C. H., Kang, H. K., Goo, J. S., Lee, M. R., Lim, H. J., Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W., Paik, S. G., Cho, J. S., and Kim, Y. K., Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J., 16, 805-813 (2002) https://doi.org/10.1096/fj.01-0732com
- Ignatius, M. J., Gebicke-Harter, P. J., and Skene, J. H., Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. U.S.A., 83, 1125-1129 (1986)
- Irizarry, M. C., Deng, A., Lleo, A., Berezovska, O., Von Arnim, C. A., Martin-Rehrmann, M., Manelli, A., LaDu, M. J., Hyman, B. T., and Rebeck, G. W., Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein. J. Neurochem., 90, 1132-1143 (2004) https://doi.org/10.1111/j.1471-4159.2004.02581.x
- Janicki, S. and Monteiro, M. J., Increased apoptosis arising from increased expression of the Alzheimer's diseaseassociated presenilin-2 mutation (N141I). J. Cell Biol., 139, 485-495 (1997) https://doi.org/10.1083/jcb.139.2.485
- Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., and Drachman, D. A., Statins and the risk of dementia. Lancet, 356, 1627-1631 (2000) https://doi.org/10.1016/S0140-6736(00)03155-X
- Koudinov, A. R., Berezov, T. T., and Koudinov, N. V., The levels of soluble amyloid beta in different high density lipoprotein subfractions distinguish Alzheimer's and normal aging cerebrospinal fluid: implication for brain cholesterol pathology? Neurosci. Lett., 314, 115-118 (2001) https://doi.org/10.1016/S0304-3940(01)02263-7
- Koudinov, A. R., Berezov, T. T., and Kumar, A., Alzheimer's amyloid b interaction with normal human plasma high density lipoprotein: association with apolipoprotein and lipids. Clin. Chim. Acta., 270, 75-84 (1998) https://doi.org/10.1016/S0009-8981(97)00207-6
- Lee, S. Y., Hwang, D. Y., Kim, Y. K., Lee, J. W., Shin, I. C., Oh, K. W., Lee, M. K., Lim, J. S., Yoon, do. Y., Hwang, S. J., and Hong, J. T., PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase- 3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J., 20,151-153 (2006) https://doi.org/10.1096/fj.05-4017fje;1
- Michikawa, M., Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer's disease? J. Neurosci. Res., 72, 141-146 (2003) https://doi.org/10.1002/jnr.10585
- Mori, M., Nakagami, H., Morishita, R., Mitsuda, N., Yamamoto, K., Yoshimura, S., Ohkubo, N., Sato, N., Ogihara, T., and Kaneda, Y., N141I mutant presenilin-2 gene enhances neuronal cell death and decreases bcl-2 expression. Life Sci., 70, 2567-2580 (2002) https://doi.org/10.1016/S0024-3205(02)01514-X
- Pappolla, M. A., Bryant-Thomas, T. K., and Herbert, D., Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology, 61, 199- 205 (2003) https://doi.org/10.1212/01.WNL.0000070182.02537.84
- Refolo, L. M., Pappolla, M. A., and La Francois, J., A cholesterol-lowering drug reduces b-amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis., 8, 890-899 (2001) https://doi.org/10.1006/nbdi.2001.0422
- Refolo, L. M., Malester, B., La Francois, J., Bryant-Thomas, T., Wang, R., Tint, G. S., Sambamurti, K., Duff, K., and Pappolla, M. A., Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis., 7, 321-331 (2000) https://doi.org/10.1006/nbdi.2000.0304
- Runz, H., Rietdorf, J., Tomic, I., de Bernard, M., Beyreuther, K., Pepperkok, R., and Hartmann, T., Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J. Neurosci., 22, 1679-1689 (2002) https://doi.org/10.1523/JNEUROSCI.22-05-01679.2002
- Sawamura, N., Morishima-Kawashima, M., Waki, H., Kobayashi, K., Kuramochi, T., Frosch, M. P., Ding, K., Ito, M., Kim, T. W., Tanzi, R. E., Oyama, F., Tabira, T., Ando, S., and Ihara, Y., Mutant presenilin 2 transgenic mice. A large increase in the levels of Abeta 42 is presumably associated with the low density membrane domain that contains decreased levels of glycerophospholipids and sphingomyelin. J. Biol. Chem., 275, 27901-27908 (2000)
- Shie, F. S., Jin, L. W., and Cook, D. G., Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 213, 455-459 (2002)
- Simons, K. and Ikonen, E., How cells handle cholesterol. Science, 290, 1721-1726 (2000) https://doi.org/10.1126/science.290.5497.1721
- Subasinghe, S., Unabia, S., Barrow, C. J., Mok, S. S., Aguilar, M. I., and Small, D. H., Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J. Neurochem., 84, 471-479 (2003) https://doi.org/10.1046/j.1471-4159.2003.01552.x
- Tan, Z. S., Seshadri, S., and Beiser, A., Plasma total cholesterol level as a risk factor for Alzheimer's disease: the Framingham study. Arch. Intern. Med., 163, 1053-1057 (2003) https://doi.org/10.1001/archinte.163.9.1053
- Wahrle, S., Das, P., and Nyborg, A. C., Cholesterol-dependent g-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol. Dis., 9, 11-23 (2002) https://doi.org/10.1006/nbdi.2001.0470
- Wellington, C. L., Cholesterol at the crossroads: Alzheimer's disease and lipid metabolism. Clin. Genet., 66, 1-16 (2004) https://doi.org/10.1111/j.0009-9163.2004.00280.x