Dexamethasone Inhibits the Formation of Multinucleated Osteoclasts via Down-regulation of ${\beta}_3$ Integrin Expression

  • Kim, Yong-Hee (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jun, Ji-Hae (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Woo, Kyung-Mi (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ryoo, Hyun-Mo (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Gwan-Shik (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University)
  • Published : 2006.08.01

Abstract

Although glucocorticoids are known to affect osteoclast differentiation and function, there have been conflicting reports about the effect of glucocorticoids on osteoclast formation, leading to the assumption that microenvironment and cell type influence their action. We explored the effect of the synthetic glucocorticoid analog dexamethasone on the formation of osteoclasts. Dexamethasone inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts without affecting the formation of TRAP-positive mononuclear cells in a coculture of mouse osteoblasts and bone marrow cells. Dexamethasone did not inhibit mRNA expression levels of the receptor activator of nuclear factor-kB ligand and osteoprotegerin, the essential regulators of osteoclastogenesis. Dexamethasone down-regulated the expression of ${\beta}_3$ integrin mRNA and protein but did not alter expression of other osteoclast differentiation marker genes. Both dexamethasone and echistatin, a ${\beta}_3$ integrin function blocker, inhibited TRAP-positive multinucleated osteoclast formation but not TRAP-positive mononuclear cell formation. These results suggest that dexamethasone inhibits the formation of multinucleated osteoclasts, at least in part, through the down-regulation of ${\beta}_3$ integrin, which plays an important role in the formation of multinucleated osteoclasts.

Keywords

References

  1. Canalis, E., Clinical Review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J. Clin. Endocrinol. Metab., 81, 3441-3447 (1996) https://doi.org/10.1210/jc.81.10.3441
  2. Crippes, B. A., Engleman, V. W., Settle, S. L., Delarco, J., Ornberg, R. L., Helfrich, M. H., Horton, M. A., and Nickols, G. A., Antibody to beta3 integrin inhibits osteoclast-mediated bone resorption in the thyroparathyroidectomized rat. Endocrinology, 137, 918-924 (1996) https://doi.org/10.1210/en.137.3.918
  3. Dickerson, J. E. Jr., Steely, H. T. Jr., English-Wright, S. L., and Clark, A. F., The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp. Eye Res., 66, 731-738 (1998) https://doi.org/10.1006/exer.1997.0470
  4. Duong, L. T., Lakkakorpi, P., Nakamura, I., and Rodan, G. A., Integrins and signaling in osteoclast function. Matrix Biol., 19, 97-105 (2000) https://doi.org/10.1016/S0945-053X(00)00051-2
  5. Duong, L. T. and Rodan, G. A., Regulation of osteoclast formation and function. Rev. Endocr. Metab. Disord., 2, 95- 104 (2001) https://doi.org/10.1023/A:1010063225902
  6. Feng, X., Novack, D. V., Faccio, R., Ory, D. S., Aya, K., Boyer, M. I., McHugh, K. P., Ross, F. P., and Teitelbaum, S. L., A Glanzmann's mutation in beta 3 integrin specifically impairs osteoclast function. J. Clin. Invest., 107, 1137-1144 (2001) https://doi.org/10.1172/JCI12040
  7. Hofbauer, L. C., Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur. J. Endocrinol., 141, 195-210 (1999) https://doi.org/10.1530/eje.0.1410195
  8. Hultenby, K., Reinholt, F. P., and Heinegard, D., Distribution of integrin subunits on rat metaphyseal osteoclasts and osteoblasts. Eur. J. Cell Biol., 62, 86-93 (1993)
  9. Inoue, M., Namba, N., Chappel, J., Teitelbaum, S. L., and Ross, F. P., Granulocyte macrophage-colony stimulating factor reciprocally regulates alphav-associated integrins on murine osteoclast precursors. Mol. Endocrinol., 12, 1955-1962 (1998) https://doi.org/10.1210/me.12.12.1955
  10. Kaji, H., Sugimoto, T., Kanatani, M., Nishiyama, K., and Chihara, K., Dexamethasone stimulates osteoclast-like cell formation by directly acting on hemopoietic blast cells and enhances osteoclast-like cell formation stimulated by parathyroid hormone and prostaglandin E2. J. Bone Miner. Res., 12, 734-741 (1997) https://doi.org/10.1359/jbmr.1997.12.5.734
  11. Kim, H. H., Chung, W. J., Lee, S. W., Chung, P. J., You, J. W., Kwon, H. J., Tanaka, S., and Lee, Z. H., Association of sustained ERK activity with integrin beta3 induction during receptor activator of nuclear factor kappaB ligand (RANKL)- directed osteoclast differentiation. Exp. Cell Res., 289, 368- 377 (2003) https://doi.org/10.1016/S0014-4827(03)00288-X
  12. Kim, Y. H., Kim, G. S., and Baek, J. H., Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Exp. Mol. Med., 34, 145-151 (2002) https://doi.org/10.1038/emm.2002.21
  13. Lee, S. W., Kwak, H. B., Chung, W. J., Cheong, H., Kim, H. H., and Lee, Z. H., Participation of protein kinase C beta in osteoclast differentiation and function. Bone, 32, 217-227 (2003) https://doi.org/10.1016/S8756-3282(02)00976-6
  14. McHugh, K. P., Hodivala-Dilke, K., Zheng, M. H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F. P., Hynes, R. O., and Teitelbaum, S. L., Mice lacking a3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest., 105, 433-440 (2000) https://doi.org/10.1172/JCI8905
  15. Nagai, M. and Sato, N., Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem. Biophys. Res. Commun., 257, 719-723 (1999) https://doi.org/10.1006/bbrc.1999.0524
  16. Nakamura, I., Tanaka, H., Rodan, G. A., and Duong, L. T., Echistatin inhibits the migration of murine prefusion osteoclasts and the formation of multinucleated osteoclastlike cells. Endocrinology, 139, 5182-5193 (1998) https://doi.org/10.1210/en.139.12.5182
  17. Pharoah, M. and Heersche, J., Dexamethasone inhibits formation of osteoclast-like cells in bone-marrow cultures. J. Dent. Res., 65, 1006-1009 (1986) https://doi.org/10.1177/00220345860650070201
  18. Richards, C. D., Langdon, C., Deschamps, P., Pennica, D., and Shaughnessy, S. G., Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone. Cytokine, 12, 613-621 (2000) https://doi.org/10.1006/cyto.1999.0635
  19. Roodman, G. D., Advances in Bone Biology: The Osteoclast. Endocrine Rev., 17, 308-332 (1996)
  20. Ross, F. P. and Teitelbaum, S. L., ${\alpha}_v$${\beta}_3$ and macrophage colonystimulating factor: partners in osteoclast biology. Immunol. Rev., 208, 88-105 (2005) https://doi.org/10.1111/j.0105-2896.2005.00331.x
  21. Sexton, D. W., Blaylock, M. G., and Walsh, G. M., Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: a process upregulated by dexamethasone. J. Allergy Clin. Immunol., 108, 962-969 (2001) https://doi.org/10.1067/mai.2001.119414
  22. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T., and Martin, T. J., Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev., 20, 345-357 (1999) https://doi.org/10.1210/er.20.3.345
  23. Takahashi, N., Udagawa, N., and Suda, T., A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/ RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun., 256, 449-455 (1999) https://doi.org/10.1006/bbrc.1999.0252
  24. Takuma, A., Kaneda, T., Sato, T., Ninomiya, S., Kumegawa, M., and Hakeda, Y., Dexamethasone enhances osteoclast formation synergistically with transforming growth factor-beta by stimulating the priming of osteoclast progenitors for differentiation into osteoclasts. J. Biol. Chem., 278, 44667- 44674 (2003) https://doi.org/10.1074/jbc.M300213200
  25. Wada, S., Yasuda, S., Nagai, T., Maeda, T., Kitahama, S., Suda, S., Findlay, D. M., Iitaka, M., and Katayama, S., Regulation of calcitonin receptor by glucocorticoid in human osteoclast-like cells prepared in vitro using receptor activator of nuclear factor-kappaB ligand and macrophage colonystimulating factor. Endocrinology, 142, 1471-1478 (2001) https://doi.org/10.1210/en.142.4.1471
  26. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N., and Suda, T., Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesisinhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A., 95, 3597-3602 (1998)