Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook (Department of Pharmacology, College of Medicine, Dongguk University)
  • Published : 2006.08.01

Abstract

The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Keywords

References

  1. Behl, C. and Moosmann, B., Causes and consequences of oxidative stress in Alzheimer's disease. Free Rad. Biol. Med., 33, 182-191 (2002) https://doi.org/10.1016/S0891-5849(02)00883-3
  2. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid-beta protein toxicity. Cell, 77, 817-827 (1994) https://doi.org/10.1016/0092-8674(94)90131-7
  3. Bok, S. H., Lee, S. H., Park, Y. B., Bae, K. H., Son, K. H., Jeong, T. S., and Choi, M. S., Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J. Nutr., 129, 1182-1185 (1999)
  4. Cho, J. and Lee, H. -K., Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur. J. Pharmacol., 485, 105-110 (2004) https://doi.org/10.1016/j.ejphar.2003.11.064
  5. Cho, J., Joo, N. E., Kong, J. -Y., Jeong, D. -Y., Lee, K. D., and Kang, B. -S., Inhibition of excitotoxic neuronal death by methanol extract of Acori graminei rhizoma in cultured rat cortical neurons. J. Ethnopharmacol., 73, 31-37 (2000) https://doi.org/10.1016/S0378-8741(00)00262-2
  6. Cho, J., Kim, Y. H., Kong, J. -Y., Yang, C. -H., and Park, C. -G., Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sci., 71, 591-599 (2002) https://doi.org/10.1016/S0024-3205(02)01729-0
  7. Cho, J., Kim, H. M., Ryu, J. -H., Jeong, Y. S., Lee, Y. S., and Jin, C., Neuroprotective and antioxidant effects of the ethyl acetate fraction prepared from Tussilago farfara L. Biol. Pharm. Bull., 28, 455-460 (2005) https://doi.org/10.1248/bpb.28.455
  8. Cho, J., Kong, J. -Y., Jeong, D. -Y., Lee, K. D., Lee, D. U., and Kang, B. -S., NMDA receptor-mediated neuroprotection by essential oils from rhizomes of Acorus gramineus. Life Sci., 68, 1567-1573 (2001) https://doi.org/10.1016/S0024-3205(01)00944-4
  9. Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K., and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother. Res., 16, 232-235 (2002) https://doi.org/10.1002/ptr.828
  10. Dew, T. P., Day, A. J., and Morgan, M. R., Xanthine oxidase activity in vitro: effects of food extracts and components. J. Agric. Food Chem., 53, 6510-6515 (2005) https://doi.org/10.1021/jf050716j
  11. Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y. H., Jin, C., Lee, Y. S., and Cho, J., Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res., 965, 130-136 (2003) https://doi.org/10.1016/S0006-8993(02)04150-1
  12. Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., and Choi, D. W., Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J. Neurosci., 15, 6377-6388 (1995) https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995
  13. Galati, E. M., Monforte, M. T., Kirjavainen, S., Forestieri, A. M., Trovato, A., and Tripodo, M. M., Biological effects of hesperidin, a Citrus flavonoid (Note I): antiinflammatory and analgesic activity. Farmaco, 40, 709-712 (1994)
  14. Galati, E. M., Trovato, A., Kirjavainen, S., Forestieri, A. M., Rossitto, A., and Monforte, M. T., Biological effects of hesperidin, a Citrus flavonoid (Note III): antihypertensive and diuretic activity in rat. Farmaco, 51, 219-221 (1996)
  15. Garg, A., Garg, S., Zaneveld, L. J., and Singla, A. K., Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res., 15, 655–669 (2001)
  16. Halliwell, B., Reactive oxygen species and the central nervous system. J. Neurochem., 59, 1609-1623 (1992) https://doi.org/10.1111/j.1471-4159.1992.tb10990.x
  17. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, A., and Caney, J. M., Direct evidence of oxidative injury produced by the Alzheimer's beta-amyloid peptide (1-40) in cultured hippocampal neurons. Exp. Neurol., 131, 193-202 (1995) https://doi.org/10.1016/0014-4886(95)90002-0
  18. Hirata, A., Murakami, Y., Shoji, M., Kadoma, Y., and Fujisawa, S., Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res., 25, 3367-3374 (2005)
  19. Jung, H. A., Jung, M. J., Kim, J. Y., Chung, H. Y., and Choi, J. S., Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch. Pharm. Res., 26, 809-815 (2003) https://doi.org/10.1007/BF02980025
  20. Jung, Y. -S., Kang, T. -S., Yoon, J. -H., Joe, B. -Y., Lim, H. -J., Seong, C. -M., Park, W. K., Kong, J. Y., Cho, J., and Park, N. S., Synthesis and evaluation of 4-hydroxyphenylacetic acid amides and 4-hydroxycinnamamides as antioxidants. Bioorg. Med. Chem. Lett., 12, 2599-2602 (2002) https://doi.org/10.1016/S0960-894X(02)00479-1
  21. Kim, D. -H., Jung, E. -A., Sohng, I. -S., Han, J. -A., Kim, T. -H., and Han, M. J., Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 21, 17-23 (1998) https://doi.org/10.1007/BF03216747
  22. Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite. Free Rad. Res., 38, 761-769 (2004) https://doi.org/10.1080/10715760410001713844
  23. Mandel, S. and Youdim, M. B., Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Rad. Biol. Med., 37, 304-317 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.04.012
  24. Matsuda, H., Yano, M., Kubo, M., Iinuma, M., Oyama, M., and Mizuno, M., Pharmacological study on citrus fruits. II. Antiallergic effect of fruit of Citrus unshiu MARKOVICH (2). On flavonoid components. Yakugaku Zasshi., 111, 193-198 (1991) https://doi.org/10.1248/yakushi1947.111.3_193
  25. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, cancer. Pharmacol. Rev., 52, 673–751 (2000)
  26. Miyake, Y., Yamamoto, K., Tsujihara, N., and Osawa, T., Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids, 33, 689-695 (1998) https://doi.org/10.1007/s11745-998-0258-y
  27. Nagao, A., Seki, M., and Kobayashi, H., Inhibition of xanthine oxidase by flavonoids. Biosci. Biotechnol. Biochem., 63, 1787-1790 (1999) https://doi.org/10.1271/bbb.63.1787
  28. Orallo, F., Alvarez, E., Basaran, H., and Lugnier, C., Comparative study of the vasorelaxant activity, superoxide-scavenging ability and cyclic nucleotide phosphodiesterase-inhibitory effects of hesperetin and hesperidin. Naunyn Schmiedebergs Arch. Pharmacol., 370, 452-463 (2004) https://doi.org/10.1007/s00210-004-0994-6
  29. Ratty, A. K. and Das, N. P., Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem.Med. Metab. Biol., 39, 69-79 (1988) https://doi.org/10.1016/0885-4505(88)90060-6
  30. Reynolds, I. J. and Hastings, T. G., Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci., 15, 3318-3327 (1995) https://doi.org/10.1523/JNEUROSCI.15-05-03318.1995
  31. Saija, A., Scalese, M., Lanza, M., Marzullo, D., Bonina, F., and Castelli F., Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Rad. Biol. Med., 19, 481-486 (1995) https://doi.org/10.1016/0891-5849(94)00240-K
  32. Sauer, D. and Fagg, G. E., Excitatory amino acids, excitotoxicity and neurodegenerative disorders. In: Krogsgaard-Larsen, P. and Hansen, J. J. (Eds.). Excitatory Amino Acid Receptors. Ellis Horwood, New York, pp. 13-33, (1992)
  33. Sengpiel, B., Preis, E., Krieglstein, J., and Prehn, J. H., NMDAinduced superoxide production and neurotoxicity in cultured rat hippocampal neurons: role of mitochondria. Eur. J. Neurosci., 10, 1903-1910 (1998) https://doi.org/10.1046/j.1460-9568.1998.00202.x
  34. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N., Oxidative damage in Alzheimer's disease. Nature, 382, 120-121 (1996)
  35. Wilmsen, P. K., Spada, D. S., and Salvador, M., Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem., 53, 4757-4761 (2005) https://doi.org/10.1021/jf0502000
  36. Xie, C., Lovell, M. A., Xiong, S., Kindy, M. S., Guo, J. -T., Xie, J., Amaranth, V., Montine, T. J., and Markesbery, W. R., Expression of glutathione-S-transferase isozyme in the SY5Y neuroblastoma cell line increases resistance to oxidative stress. Free Rad. Biol. Med., 31, 73-81 (2001) https://doi.org/10.1016/S0891-5849(01)00553-6
  37. Yoon, I., Lee, K. H., and Cho, J., Gossypin protects primary cultured rat cortical cells from oxidative stress- and ${\beta}$- amyloid-induced toxicity. Arch. Pharm. Res., 27, 454-459 (2004) https://doi.org/10.1007/BF02980089
  38. Yuting, C., Rongliang, Z., Zhongjian, J., and Yong, J., Flavonoids as superoxide scavengers and antioxidants. Free Rad. Biol. Med., 9, 19-21 (1990)