Pharmacokinetics and Bioequivalence Evaluation of Risperidone in Healthy Male Subjects with Different CYP2D6 Genotypes

  • Cho, Hea-Young (Clinical Trial Center, Chonnam National University Hospital) ;
  • Lee, Yong-Bok (Clinical Trial Center, Chonnam National University Hospital,College of Pharmacy and Institute of Bioequivalence and Bridging Study, Chonnam National University)
  • Published : 2006.06.01

Abstract

The aim of this study was to evaluate the bioequivalence of risperidone in healthy male subjects representing different CYP2D6 genotypes with respect to risperidone, 9-hydroxyrisperidone (9-OH-risperidone), and active moiety. A total of 506 Korean subjects were genotyped for $CYP2D6^*10$ by means of allele-specific polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Based on the genotype analysis, 24 subjects, 7 homozygous for $CYP2D6^*1$ for $^*10$, and 7 heterozygous for $^*10$, were recruited and received a single oral dose of 2 mg risperidone tablet in this study. Serum concentrations of risperidone and 9-OH-risperidone up to 48 h were simultaneously determined. There were no significant differences of the active moiety, risperidone, and 9-OH-risperidone between the two preparations in AUC_{0-{\propto}}$ and $C_{max}$. The 90% confidence intervals (Cls) for the ratio of means of the log-trans-formed AUC_{0-{\propto}}$ and $C_{max}$ for the active moiety, risperidone, and 9-OH-risperidone were all within the bioequivalence acceptance criteria of 0.80-1.25. The $CYP2D6^*10$ allele particularly was associated with higher serum concentrations of risperidone and the risperidone/9-OH-risperidone ratio compared with the $CYP2D6^*1$ allele. The results demonstrate that the two preparations of risperidone are bioequivalent and it can be assumed that they are therapeutically equivalent and exchangeable in clinical practice. Furthermore, the pharmacokinetic parameters of risperidone and the risperidone/9-OH-risperidone ratio are highly dependent on the CYP2D6 genotypes.

Keywords

References

  1. Armstrong, M., Fairbrother, K., Idle, J. R., and Daly, A. K., The cytochrome P450 CYP2D6 allelic variant CYP2D6J and related polymorphisms in a European population. Pharmacogenetic, 4, 73-81 (1994) https://doi.org/10.1097/00008571-199404000-00004
  2. Bathum, L., Skjelbo, E., Mutabingwa, T. K., Madsen, H., Horder, M., and Brosen, K., Phenotypes and genotypes for CYP2D6 and CYP2C19 in a black Tanzanian population. Br. J. Clin. Pharmacol., 48, 395-401 (1999) https://doi.org/10.1046/j.1365-2125.1999.00019.x
  3. Bertilsson, L., Dahl, M. L., Dalén, P., and Al-Shurbaji, A., Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br. J. Clin. Pharmacol., 53, 111-122 (2002) https://doi.org/10.1046/j.0306-5251.2001.01548.x
  4. Brosen, K. and Rasmussen, B. B., Selective serotonin reuptake inhibitors: advances in basic research and clinical practice. John Wiley & Sons Ltd., pp. 87-108, (1996)
  5. Chouinard, G. and Arnott, W., Clinical review of risperidone. Can. J. Psychiatry., 38, 89-95 (1993)
  6. Chow, S. C. and Liu, J. P., Design and Analysis of Bioavailability and Bioequivalence Studies. Marcel Dekker Inc., New York, (1992)
  7. Claus, A., Bollen, J., De Cuyper, H., Eneman, M., Malfroid, M., Peuskens, J., and Heylen, S., Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatr. Scand., 85, 295-305 (1992) https://doi.org/10.1111/j.1600-0447.1992.tb01473.x
  8. Daniel, W. N. and David, W. R., Clinical importance of the cytochromes P450. Lance, 360, 1155-1162 (2002) https://doi.org/10.1016/S0140-6736(02)11203-7
  9. Evans, W. E. and Relling, M. V., Pharmacogenomics: translating functional genomics into rational therapeutics. Science, 286, 487 (1999)
  10. Fang. J., Bourin, M., and Baker. G. B., Metabolism of risperidone to 9-hydroxy-risperidone by human cytochromes P450 2D6 and 3A4. Naunyn-Schmiedebergs Arch. Pharmacol., 359, 147-151 (1999) https://doi.org/10.1007/PL00005334
  11. Gan, S. H., Ismail, R., Wan Adnan, W. A., and Wan, Z., Correlation of tramadol pharmacokinetics and CYP2D6*10 genotype in Malaysian subjects. J. Pharm. Biomed. Anal., 30, 189-195 (2002) https://doi.org/10.1016/S0731-7085(02)00214-5
  12. Gibaldi, M. and Perrier, D., Pharmacokinetics (2nd ed). Marcel Dekker Inc., New York, (1982)
  13. Guidance for Industry: Bioanalytical Method Validation. US Food and Drug Administration, Center for Drug Evaluation and Research, (2001)
  14. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms. US Food and Drug Administration, Center for Drug Evaluation and Research, (1997)
  15. Guideline for Bioequivalence Test. Korea Food and Drug Administration, (2002)
  16. He, H. and Richardson, J. S., A pharmacological, pharmacokinetic and clinical overview of risperidone, a new antipsychotic that blocks serotonin 5-HT2 and dopamine D2 receptors. Int. Clin. Psychopharmacol., 10, 19-30 (1995) https://doi.org/10.1097/00004850-199512004-00004
  17. http://www.imm.ki.se/CYPalleles/ cyp2d6.htm
  18. Huang, M. L., Van Peer, A., Woestenborghs, R., De Coster, R., Heykants, J., Jansen, A. A., Zylicz, Z., Visscher, H. W., and Jonkman, J. H., Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin. Pharmacol. Ther., 54, 257-268 (1993) https://doi.org/10.1038/clpt.1993.146
  19. Janssen, P. A., Niemegeers, C. J., Awouters, F., Schellekens, K. H., Megens, A. A., and Meert, T. F., Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin- S2 and dopamine-D2 antagonistic properties. J. Pharmacol. Exp. Ther., 244, 685-693 (1988)
  20. Johansson, I., Oscarson, M., Yue, Q. Y., Bertilsson, L., Sjoqvist, F., and Ingelman-Sundberg, M., Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol., 46, 452-459 (1994)
  21. Leysen, J. E., Gommeren, W., Eens, A., de Chaffoy de Courcelles, D., Stoof, J. C., and Janssen, P. A., Biochemical profile of risperidone, a new antipsychotic. J. Pharmacol. Exp. Ther., 247, 661-670 (1988)
  22. Locke, C. S., An exact confidence interval from untransformed data for the ratio of two formulation means. J. Pharmacokinet. Biopharm., 12, 649-655 (1984) https://doi.org/10.1007/BF01059558
  23. Mandallaz, D. and Mau, J., Comparison of different methods of decision making in bioequivalence assessment. Biometrics, 37, 213-222 (1981) https://doi.org/10.2307/2530412
  24. Mannens, G., Huang, M. L., Meuldermans, W., Hendrickx, J., Woestenborghs, R., and Heykants, J., Absorption, metabolism, and excretion of risperidone in humans. Drug Metab. Dispos., 21, 1134-1141 (1993)
  25. Ono, S., Mihara, K., Suzuki, A., Kondo, T., Yasui-Furukori, N., Furukori, H., de Vries, R., and Kaneko, S., Significant pharmacokinetic interaction between risperidone and carbamazepine: its relationship with CYP2D6 genotypes. Psychopharmacology, 162, 50-54 (2002) https://doi.org/10.1007/s00213-002-1056-8
  26. Ramamoorthy, Y., Tyndale, R. F., and Sellers, E. M., Cytochrome P450 2D6*1 and cytochrome P450 2D6*10 differ in catalytic activity for multiple substrates. Pharmacogenetic, 11, 477- 487 (2001) https://doi.org/10.1097/00008571-200108000-00003
  27. Rogers, J. F., Nafziger, A. N., and Bertino, J. S., Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am. J. Med. 113, 746-750 (2002) https://doi.org/10.1016/S0002-9343(02)01363-3
  28. Shah, V. P., Midha, K. K., Findlay, J. W., Hill, H. M., Hulse, J. D., McGilveray, U., McKay, G., Miller, K. J., Patnaik, R. N., Powell, M. L., Tonelli, A., Viswanathan, C. T., and Yacobi, A., Bioanalytical method validation-A revisit with a decade of progress. Pharm. Res., 17, 1551-1557 (2000) https://doi.org/10.1023/A:1007669411738
  29. The United States Pharmacopoeia 26. Maryland: US Pharmacopeial Convention, Inc., pp. 2155, (2003)
  30. Westlake, W. J., Use of confidence intervals in analysis of comparative bioavailability trials. J. Pharm. Sci., 61, 1340-1341 (1972) https://doi.org/10.1002/jps.2600610845
  31. Wilson, J. F., Weale, M. E., Smith, A. C., Gratrix, F., Fletcher, B., Thomas, M. G., Bradman, N., and Goldstein, D. B., Population genetic structure of variable drug response. Nat. Genet., 29, 265-269 (2001) https://doi.org/10.1038/ng761