Effects of the Aqueous Extract of Rehmanniae Radix Preparata on Lipopolysaccharide-induced Expressions of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in Mouse BV2 Microglial Cells

  • Jung, Chang-Young (Department of Physiology, College of Oriental Medicine, Kyungwon University) ;
  • Sung, Yun-Hee (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Sung-Eun (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Kim, Chang-Ju (Department of Physiology, College of Medicine, Kyung Hee University) ;
  • Han, Seung-Ho (Department of Physiology, College of Medicine, Eulji University) ;
  • Lee, Choong-Yeol (Department of Physiology, College of Oriental Medicine, Kyungwon University)
  • Published : 2006.08.25

Abstract

Rehmanniae radix preparata is the root of Rehmanniae glutinosa Liboschitz var. purpurea Makino which has been classified into Scrophulariaceae. Rehmanniae radix preparata has been used for the treatment of diabetes, for the relief of the pain, and for the anti-oxidative action. In this study, the effect of the aqueous extract of Rehmanniae radix preparata on lipopolysaccharide-induced inflammation was investigated by using 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot, prostaglandin E2 immunoassay, and nitric oxide (NO) detection in mouse BV2 microglial cells. In the present results, the aqueous extract of Rehmanniae radix preparata suppressed prostaglandin E2 (PGE2) synthesis and nitric oxide production by inhibiting the lipopolysaccharide-stimulated expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) mRNA and protein in mouse BV2 cells. These results show that Rehmanniae radix preparata exerts anti-inflammatory effect probably by suppressing of COX-2 and iNOS expressions.

Keywords

References

  1. Gonzalez-Scarano, F., Baltuch, G. Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22, 219-240, 1999 https://doi.org/10.1146/annurev.neuro.22.1.219
  2. Min, K.J., Yang, M.S., Jou, I., Joe, E.H. Protein kinase A mediates microglial activation induced by plasminogen and gangliosides. Exp Mol Med 36, 461-467, 2004 https://doi.org/10.1038/emm.2004.58
  3. Kim, W.K., Hwang, S.Y., Oh, E. S., Piao, H.Z., Kim, K.W., Han, I.O. TGF-$\alpha$ represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172, 7015-7023, 2004 https://doi.org/10.4049/jimmunol.172.11.7015
  4. Kubes, P., McCafferty, D.M. Nitric oxide and intestinal inflammation. Am J Med 109, 150-158, 2000 https://doi.org/10.1016/S0002-9343(00)00480-0
  5. Mitchell, J.A., Larkin, S., Williams, T.J. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 50, 1535-1542, 1995 https://doi.org/10.1016/0006-2952(95)00212-X
  6. Crofford, L.J., Lipsky, P.E., Brooks, P., Abramson, S.B., Simon, L.S., Van de Putte, L.B. Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum 43, 4-13, 2000 https://doi.org/10.1002/1529-0131(200001)43:1<4::AID-ANR2>3.0.CO;2-V
  7. Bredt, D.S., Snyder, S.H. Nitric Oxide: a physiologic messenger molecule. Annu Rev Biochem 63, 175-195, 1994 https://doi.org/10.1146/annurev.bi.63.070194.001135
  8. Dawson, T.M., Dawson, V.L., Snyder, S.H. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32, 297-311, 1992 https://doi.org/10.1002/ana.410320302
  9. Yui, Y., Hattori, R., Kosuga, K., Eizawa, H., Hiki, K., Kawai, C. Purification of nitric oxide synthase from rat macrophages. J Biol Chem 266, 12544-12547, 1991
  10. Jeong, H.J., Kim, I.H. Comparative studies on the antidiabetic activities of Rehmannia Radices. Chung-Ang J Pharm Sci 4, 22-31, 1990
  11. Jo, S.I. Anti oxidative effects of RADIX REHMANNIAE PREPARATA on toxic agent induced kidney cell injury. Kor J Herbology 18, 119-126, 2003
  12. Kim, H.M., An, C.S., Jung, K.Y., Choo, Y.K., Park, J.K., Nam, S.Y. Rehmannia glutinosa inhibits tumor necrosis factor-alpha and interleukin-1 secretion from mouse astrocytes. Pharmacol Res 40, 171-176, 1999 https://doi.org/10.1006/phrs.1999.0504
  13. McGeer, P.L., McGeer, E.G. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21, 195-218, 1995 https://doi.org/10.1016/0165-0173(95)00011-9
  14. Watkins, L.R., Maier, S.F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol 51, 29-57, 2000 https://doi.org/10.1146/annurev.psych.51.1.29
  15. Thierauch, K.H., Dinter, H., Stock, G. Prostaglandins and their receptors: II. Receptor structure and signal transduction. J Hypertens 12, 1-5, 1994 https://doi.org/10.1097/00004872-199401000-00001
  16. Mitchell, J.A., Larkin, S., Williams, T.J. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 50, 1535-1542, 1995 https://doi.org/10.1016/0006-2952(95)00212-X
  17. Hinz, B., Brune, K., Pahl, A. Prostaglandin E(2) upregulates cyclooxygenase-2 expression in lipopolysaccharide- stimulated RAW 264.7 macrophages. Biochem Biophys Res Commun 272, 744-748, 2000 https://doi.org/10.1006/bbrc.2000.2859
  18. Salvemini, D., Misko, T.P., Masferrer, J. L., Seibert, K., Currie, M.G., Needleman, P. Nitric oxide activates cyclooxygenase enzyme. Proc Natl Acad Sci USA 90, 7240-7244, 1993
  19. Vane, J.R., Mitchell, J.A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J., Willoughby, D.A. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA 91, 2046-2050, 1994
  20. Szabo, C. Alternations in nitric oxide production in various forms of circulatory shock. New Horiz 3, 2-32, 1995
  21. Hyun, J.W., Yang, Y.M., Sung, M.S., Chung, H.S., Paik, W.H., Kang, S.S., Park, J.G. The cytotoxic activity of sterol derivatives from Pulsatilla chinensis Regal. J Korean Cancer 28, 145-150, 1996