초록
부동산분야에서 전통적인 예측방법과 비교하여 보다 예측력을 높일 수 있는 방법을 찾으려 한다. 이에 앞서 신경망 모형의 적용가능성을 살펴보고, 기존의 연구를 토대로 한 신경망 이론의 정의, 구조, 장단점 등을 살펴본다. 구체적인 적용가능성을 확인하기 위하여 동일 데이터로 회귀분석과 신경망분석을 통한 모형을 구축하고, 예측정확도 측면에서 신경망모형의 적용 가능성을 검토한다. 부동산학에서 기존에 회귀분석에 치우쳐 있던 연구방법을 신경망분석까지 확장하고, 특히 예측정확도 측면에서 우수성이 검증되고 있는 신경망모형에 대한 연구를 활성화 하고자 하는데 본 연구의 목적이 있다. 연구방법으로는 분양가격에 영향을 주는 거시경제변수를 모형화 한다. 그 모형설정 후 회귀분석과 신경망분석으로 결과를 비교하여 보다 예측 정확도가 높은 것을 찾는다. 그 결과 신경망모형의 예측정확도가 상당히 높게 나타났다.
Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.