DOI QR코드

DOI QR Code

NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Choi, Hee-Dong (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Shin, Dong-Chul (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2006.06.20

Abstract

A series of catalysts, $NiO/La_2O_3-ZrO_2/WO_3$, for acid catalysis was prepared by the precipitation and impregnation methods. For the $NiO/La_2O_3-ZrO_2/WO_3$ samples, no diffraction lines of nickel oxide were observed, indicating good dispersion of nickel oxide on the catalyst surface. The catalyst was amorphous to X-ray diffraction up to 300 ${^{\circ}C}$ of calcination temperature, but the tetragonal phase of $ZrO_2$ and monoclinic phase of $WO_3$ by the calcination temperatures from 400 ${^{\circ}C}$ to 700 ${^{\circ}C}$ were observed. The role of $La_2O_3$ in the catalyst was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The high acid strength and high acidity were responsible for the W=O bond nature of complex formed by the modification of $ZrO_2$ with $WO_3$. For 2-propanol dehydration the catalyst calcined at 400 ${^{\circ}C}$ exhibited the highest catalytic activity, while for cumene dealkylation the catalyst calcined at 600 ${^{\circ}C}$ showed the highest catalytic activity. 25-$NiO/5-La_2O_3-ZrO_2/15-WO_3$ exhibited maximum catalytic activities for two reactions due to the effects of $WO_3$ modifying and $La_2O_3$ doping.

Keywords

References

  1. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  2. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Elsevier Science: Amsterdam, 1989; Chap. 4
  3. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  4. Davis, B. H.; Keogh, R. A.; Srinivasan, R. Catal. Today 1994, 20, 219 https://doi.org/10.1016/0920-5861(94)80004-9
  5. Cheung, T. K.; d'Itri, J. L.; Lange, F. C.; Gates, B. C. Catal. Lett. 1995, 31, 153 https://doi.org/10.1007/BF00808829
  6. Olag, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; Wiley- Interscience: New York, 1985; p 33
  7. Ward, D. A.; Ko, E. I. J. Catal. 1994, 150, 18 https://doi.org/10.1006/jcat.1994.1319
  8. Vaudagna, S. R.; Comelli, R. A.; Canavese, S. A.; Figoli, N. S. J. Catal. 1997, 169, 389 https://doi.org/10.1006/jcat.1997.1690
  9. Kustov, L. M.; Kazansky, V. B.; Figueras, F.; Tichit, D. J. Catal. 1994, 150, 143 https://doi.org/10.1006/jcat.1994.1330
  10. Sayari, A.; Yang, Y.; Song, X. J. Catal. 1997, 167, 346 https://doi.org/10.1006/jcat.1997.1595
  11. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 1645
  12. Cheung, T. K.; Gates, B. C. J. Catal. 1997, 168, 522 https://doi.org/10.1006/jcat.1997.1654
  13. Adeeva, V.; de Haan, H. W.; Janchen, J.; Lei, G. D.; Schunemann, V.; van de Ven, L. J. M. W.; Sachtler, M. H.; van Santen, R. A. J. Catal. 1995, 151, 364 https://doi.org/10.1006/jcat.1995.1039
  14. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311 https://doi.org/10.1006/jcat.1996.0030
  15. Song, X.; Reddy, K. R.; Sayari, A. J. Catal. 1996, 161, 206 https://doi.org/10.1006/jcat.1996.0178
  16. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L. Catal. Lett. 1995, 32, 253 https://doi.org/10.1007/BF00813219
  17. Hosoi, T.; Shimadzu, T.; Ito, S.; Baba, S.; Takaoka, H.; Imai, T.; Yokoyama, N. Prepr. Symp. Div. Petr. Chem.; American Chemical Society: Los Angeles, CA, 1988; p 562
  18. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  19. Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.; Ciero, S. D.; Morterra, C. J. Catal. 1997, 167, 522 https://doi.org/10.1006/jcat.1997.1575
  20. Hino, M.; Arata, K. J. Chem. Soc. Chem. Commun. 1987, 1259
  21. Larsen, G.; Lotero, E.; Parra, R. D. In Proceedings of the 11th International Congress on Catalysis; Elsevier: New York, 1996; p 543
  22. Loong , C.-K.; Ozawa, M. J. Alloys Compd. 2000, 60, 303
  23. Sohn, J. R.; Lee, S. H.; Park, W. C.; Kim, H. W. Bull. Korean Chem. Soc. 2004, 25, 657 https://doi.org/10.5012/bkcs.2004.25.5.657
  24. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10, 309
  25. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  26. Sohn, J. R.; Chun, E. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2003, 24, 1785 https://doi.org/10.5012/bkcs.2003.24.12.1785
  27. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170 https://doi.org/10.1006/jcat.1996.0076
  28. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2002, 11, 230
  29. Sohn, J. R.; Han, J. S.; Kim, H. W.; Pae, Y. I. Bull. Korean Chem. Soc. 2005, 26, 755 https://doi.org/10.5012/bkcs.2005.26.5.755
  30. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science 1981, 211, 1121 https://doi.org/10.1126/science.211.4487.1121
  31. Wachs, I. E.; Chersich, E. C.; Hardenbergh, J. H. Appl. Catal. 1985, 13, 335 https://doi.org/10.1016/S0166-9834(00)81152-5
  32. Sohn, J. R.; Park, M. Y. Langmuir 1998, 14, 6140 https://doi.org/10.1021/la980222z
  33. Vuurman, M. A.; Wachs, I. E.; Hirt, A. M. J. Phys. Chem. 1991, 95, 9928 https://doi.org/10.1021/j100177a059
  34. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  35. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  36. Mercera, P. D. L.; van Ommen, J. G.; Doesburg, E. B. M.; Burggraaf, A. J.; Ross, J. R. H. Appl. Catal. 1990, 57, 127 https://doi.org/10.1016/S0166-9834(00)80728-9
  37. Ebitani, K.; Konishi, J.; Hattori, H. J. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  38. Adeeva, V.; Lei, G. D.; Sachtler, W. M. H. Appl. Catal. 1994, 118, L11-L15 https://doi.org/10.1016/0926-860X(94)80084-7
  39. Lin, C. H.; Hsu, C. Y. J. Chem. Soc. Chem. Commun. 1992, 1479
  40. Sohn, J. R.; Lim, J. S.; Lee, S. H. Chem. Lett. 2004, 33, 1490 https://doi.org/10.1246/cl.2004.1490
  41. Roh, H.-S.; Jun, K.-W.; Park, S.-E. J. Ind. Eng. Chem. 2003, 9, 261 https://doi.org/10.1021/ie50087a013
  42. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  43. Sohn, J. R.; Kim, H. W. J. Mol. Catal. 1989, 52, 361 https://doi.org/10.1016/0304-5102(89)85045-X
  44. Sohn, J. R.; Jang, H. J. J. Mol. Catal. 1991, 64, 349 https://doi.org/10.1016/0304-5102(91)85143-P
  45. Decanio, S. J.; Sohn, J. R.; Paul, P. O.; Lunsford, J. H. J. Catal. 1986, 101, 132 https://doi.org/10.1016/0021-9517(86)90236-8
  46. Sohn, J. R.; Han, J. S.; Lim, J. S. J. Ind. Eng. Chem. 2004, 10, 1003
  47. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103
  48. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29 https://doi.org/10.1016/0021-9517(80)90336-X
  49. Pae, Y. I.; Bae, M. H.; Park, W. C.; Sohn, J. R. Bull. Korean Chem. Soc. 2004, 25, 1881 https://doi.org/10.5012/bkcs.2004.25.12.1881
  50. Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Appl. Catal. A: Gen. 2002, 226, 63 https://doi.org/10.1016/S0926-860X(01)00883-3
  51. Roh, H.-S.; Jun, K.-W.; Baek, S.-C. J. Ind. Eng. Chem. 2003, 9, 168

Cited by

  1. The Effects of Al2O3 Addition and WO3 Modification on Catalytic Activities of NiO/TiO2 for Acid Catalysis vol.120, pp.1-2, 2008, https://doi.org/10.1007/s10562-007-9262-y
  2. CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization vol.27, pp.12, 2006, https://doi.org/10.5012/bkcs.2006.27.12.1989
  3. Effect of Al2O3 Addition and WO3 Modification on Catalytic Activity of NiO/Al2O3-TiO2/WO3 for Ethylene Dimerization vol.28, pp.10, 2006, https://doi.org/10.5012/bkcs.2007.28.10.1763
  4. Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis vol.28, pp.8, 2006, https://doi.org/10.5012/bkcs.2007.28.8.1265