DOI QR코드

DOI QR Code

Lipid Peroxidation Induced by the Reaction of Cytochrome c with Hydrogen Peroxide

  • Published : 2006.06.20

Abstract

Lipid peroxidation induced by the reaction of cytochrome c with $H_2O_2$ was investigated. When linoleic acid micelles or phosphatidyl choline liposomes were incubated with cytochrome c and $H_2O_2$, lipid peroxidation was increased in cytochrome c and $H_2O_2$ concentrations-dependent manner. Radical scavengers, azide, formate and ethanol prevented lipid peroxidation induced by the cytochrome c/$H_2O_2$ system. Iron specific chelator, desferoxamine also prevented the cytochrome c/$H_2O_2$ system-mediated lipid peroxidation. These results suggest that lipid peroxidation may be induced by the cytochrome c/$H_2O_2$ system via the generation of free radicals. Carnosine, homocarnosine and anserine are present in the muscle and brain of many animals and human. Previous studies show that these compounds have an antioxidant function. In the present study, carnosine, homocarnosine and anserine significantly prevented the cytochrome c/$H_2O_2$ system-mediated lipid peroxidation. Carnosine and related compounds also inhibited the free radical-generating activity of cytochrome c. The results suggest that carnosine, homocarnosine and anserine may prevent lipid peroxidation induced by the cytochrome c/$H_2O_2$ system through a free radical scavenging.

Keywords

References

  1. Vazquez-Duhalt, R. J. Mol. Catal. B Enzym. 1999, 7, 241 https://doi.org/10.1016/S1381-1177(99)00033-8
  2. Harel, S.; Kanner, J. J. Free Radic. Res. Commun. 1988, 5, 21 https://doi.org/10.3109/10715768809068555
  3. Li, P.; Nijhawan, D.; Budihardjo, I.; Srinvasula, S. M.; Ahmad, M.; Alnermri, E. S.; Wang, X. Cell 1997, 91, 627 https://doi.org/10.1016/S0092-8674(00)80450-X
  4. Hashimoto, M.; Takeda, A.; Hsu, L. J.; Takenouchi, T.; Masliah, E. J. Biol. Chem. 1999, 274, 28849
  5. Green, D. R.; Evan, G. I. Cancer Cell 2002, 1, 19 https://doi.org/10.1016/S1535-6108(02)00024-7
  6. Shimizu, S.; Narita, N.; Tsujimoto, Y. Nature 1999, 399, 483 https://doi.org/10.1038/20959
  7. Wang, X.; Pielak, G. J. Biochemistry 1999, 38, 16876
  8. Steinberg, D.; Parthasarathy, S.; Carew, T. E.; Khoo, J. C.; Witztum, J. L. New Engl. J. Med. 1989, 320, 915 https://doi.org/10.1056/NEJM198904063201407
  9. Schwartz, C. J.; Valente, A. J.; Sprague, E. A.; Kelley, J. L.; Nerem, R. M. Clin. Cardiol. 1991, 14, 1
  10. Halliwell, B.; Gutteridge, J. M. C. Arch. Biochem. Biophys. 1989, 246, 501
  11. Motoyama, T.; Miki, M.; Mino, M.; Takahashi, M.; Niki, E. Arch. Biochem. Biophys. 1989, 270, 655 https://doi.org/10.1016/0003-9861(89)90548-1
  12. Schuh, J.; Fairclough, G. F. Jr.; Haschemeyer, R. H. Proc. Natl. Acad. Sci. USA 1978, 75, 3173 https://doi.org/10.1073/pnas.75.7.3173
  13. Radi, R.; Thomson, R.; Rubbo, L.; Prodanov, E. Arch. Biochem. Biophys. 1991, 288, 112 https://doi.org/10.1016/0003-9861(91)90171-E
  14. Rush, J. D.; Koppenol, W. H. J. Am. Chem. Soc. 1988, 110, 4957 https://doi.org/10.1021/ja00223a013
  15. Childs, R. E.; Bardsley, W. G. Biochem. J. 1975, 145, 93
  16. Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1986, 108, 2244 https://doi.org/10.1021/ja00269a020
  17. Sagripanti, J. L.; Swicord, M. L.; Davis, C. C. Radiat. Res. 1987, 110, 219 https://doi.org/10.2307/3576900
  18. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640 https://doi.org/10.1126/science.2834821
  19. Sagripanti, L.; Kraemer, K. H. J. Biol. Chem. 1989, 264, 1729
  20. Kang, J. H.; Kim, S. M. Mol. Cells 1997, 7, 553
  21. Kim, N. H.; Jeong, M. S.; Choi, S. Y.; Knag, J. H. Bull. Korean Chem. Soc. 2004, 25, 1889 https://doi.org/10.5012/bkcs.2004.25.12.1889
  22. Semak, I.; Naumova, M.; Korik, E.; Terekhovich, V.; Wortsman, J.; Slominski, A. Biochemistry 2005, 44, 9300 https://doi.org/10.1021/bi050202d
  23. Chen, Y.-R.; Chen, C.-L.; Chen, W.; Zweier, J. L.; Augusto, O.; Radi, R.; Mason, R. P. J. Biol. Chem. 2004, 279, 18054 https://doi.org/10.1074/jbc.M307706200
  24. Kohen, R.; Yamamoto, Y.; Cundy, K. C.; Ames, B. N. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 3175 https://doi.org/10.1073/pnas.85.9.3175
  25. O'Dowd, J. J.; Robins, D. J.; Miller, D. J. Biochem. Biophys. Acta 1988, 967, 241 https://doi.org/10.1016/0304-4165(88)90015-3
  26. Auroma, O. I.; Laughton, M. J.; Halliwell, B. Biochem. J. 1989, 264, 863
  27. Chan, W. K. M.; Decker, E. A.; Lee, J. B.; Butterfield, D. A. J. Agric. Food Chem. 1994, 42, 1407 https://doi.org/10.1021/jf00043a003
  28. Steinberg, D.; Parthasarathy, S.; Carew, T. E.; Khoo, J. C.; Witztum, J. L. New Engl. J. Med. 1989, 320, 915 https://doi.org/10.1056/NEJM198904063201407
  29. Schwartz, C. J.; Valente, A. J.; Sprague, E. A.; Kelley, J. L.; Nerem, R. M. Clin. Cardiol. 1991, 14, 1
  30. Boritton, R. S.; Oshino, N.; Chance, B. Biochem. J. 1972, 128, 617
  31. Britton, R. S.; Bacon, B. R.; Recknagel, R. O. Chem. Phys. Lipids 1987, 45, 207 https://doi.org/10.1016/0009-3084(87)90066-1

Cited by

  1. Carnosine and Homocarnosine Inhibit Cytochrome c-Mediated DNA Strand Breakage vol.27, pp.11, 2006, https://doi.org/10.5012/bkcs.2006.27.11.1891