DOI QR코드

DOI QR Code

Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate

  • Park, Seong-Hun (Energy Nano Material Team, Korea Basic Science Institute (KBSI)) ;
  • Lee, Cheol-Eui (Institute for Nano Science and Department of Physics, Korea University)
  • Published : 2006.10.20

Abstract

We report the preparation, structure and magnetic properties of a new pillared complex, copper(II) hydroxy-1,4-butanedisulfonate, $Cu_2(OH)_3(O_3SC_4H_8SO_3)_{1/2}$. The titled compound was obtained by anion exchange, using copper hydroxyl nitrate $(Cu_2(OH)_3NO_3)$ as the starting material. According to the XRD data, this compound exhibits a pillared layered structure with organic layers tilted between the copper hydroxide layers with a tilt angle of $21.8^{\circ}$. FTIR spectroscopy confirms total exchange of nitrate by the sulfonate and indicates that the sulfonate functions are linked to the copper(II) ions with each aliphatic chain bridging the adjacent hydroxide layers. According to the dc and ac magnetic measurements, the title compound is a metamagnet consisting of spin-canted antiferromagnetic layers, with a Neel temperature of 11.8 K.

Keywords

References

  1. Alberti, G. In Comprehensive Supramolecular Chemistry; Lehn, J. M., Eds.; Pergamon: Elmsford, New York, 1996; Vol. 7, p 151
  2. Clearfield, A. Progr. Inorg. Chem. 1998, 47, 371
  3. Cao, G.; Hong, H.; Mallouck, T. Acc. Chem. Res. 1992, 25, 420 https://doi.org/10.1021/ar00021a007
  4. Mitzi, D. M. Progr. Inorg. Chem. 1999, 48, 1 https://doi.org/10.1002/9780470166499.ch1
  5. de Jongh, L. J. Magnetic Properties of Layered Transition Metal Complexes; Kluwer Academic Publishers: Dordrecht, 1990
  6. Laget, V.; Hornick, C.; Rabu, P.; Drillon, M.; Ziessel, R. Coord. Chem. Rev. 1998, 178-180, 1533 https://doi.org/10.1016/S0010-8545(98)00166-0
  7. Fujita, W.; Awaga, K.; Yokoyama, T. Appl. Clay Sci. 1999, 15, 281 https://doi.org/10.1016/S0169-1317(99)00021-6
  8. Park, S.-H.; Kim, H. J. J. Am. Chem. Soc. 2004, 126, 14368 https://doi.org/10.1021/ja047425w
  9. Huh, Y.-D.; Kwon, S.-S. Bull. Korean Chem. Soc. 2005, 26, 2054 https://doi.org/10.5012/bkcs.2005.26.12.2054
  10. Fan, W.; Sun, S.; Song, X.; Zhang, W.; Yu, H.; Tan, X.; Cao, G. J. Solid State Chem. 2004, 177, 2329 https://doi.org/10.1016/j.jssc.2004.03.028
  11. Fan, W.; Sun, S.; You, L.; Cao, G.; Song, X.; Zhang, W.; Yu, H. J. Mater. Chem. 2003, 13, 3062 https://doi.org/10.1039/b307619a
  12. Liu, B.; Yu, S.-H.; Zhang, F.; Zhang, L.; Li, Q.; Ren, L.; Jiang, K. J. Phys. Chem. B 2004, 108, 4338 https://doi.org/10.1021/jp049881c
  13. Miyata, S.; Kumura, T. Chem. Lett. 1973, 843
  14. Yamanaka, S.; Sato, T.; Hattori, M. Chem. Lett. 1989, 1869
  15. Yamanaka, S.; Sato, T.; Seki, K.; Hattori, M. Solid State Ionics 1992, 53-56, 527 https://doi.org/10.1016/0167-2738(92)90424-N
  16. Rabu, P.; Angelov, S.; Logoll, P.; Belaiche, M.; Drillon, M. Inorg. Chem. 1993, 32, 2463 https://doi.org/10.1021/ic00063a043
  17. Rouba, S.; Rabu, P.; Ressouche, E.; Regnault, L.-P.; Drillon, M. J. Magn. Magn. Mater. 1996, 163, 365 https://doi.org/10.1016/S0304-8853(96)00327-7
  18. Rabu, P.; Rouba, S.; Laget, V.; Hornick, C.; Drillon, M. J. Chem. Soc., Chem. Comm. 1996, 1107
  19. Laget, V.; Rouba, S.; Hornick, C.; Drillon, M. J. Magn. Magn. Mater. 1996, 154, L7 https://doi.org/10.1016/0304-8853(96)00036-4
  20. Rouba, S.; Rabu, P.; Ressouche, E.; Regnault, L.-P.; Drillon, M. J. Magn. Magn. Mater. 1996, 163, 365 https://doi.org/10.1016/S0304-8853(96)00327-7
  21. Laget, V.; Hornick, C.; Rabu, P.; Drillon, M.; Ziessel, R. Coord. Chem. Rev. 1998, 178-180, 1533. https://doi.org/10.1016/S0010-8545(98)00166-0
  22. Fujita, W.; Awaga, K. Inorg. Chem. 1996, 35, 1915 https://doi.org/10.1021/ic950965x
  23. Fujita, W.; Awaga, K.; Yokoyama, T. Inorg. Chem. 1997, 36, 196 https://doi.org/10.1021/ic960787n
  24. Fujita, W.; Awaga, K. J. Am. Chem. Soc. 1997, 119, 4563 https://doi.org/10.1021/ja970239o
  25. Fujita, W.; Awaga, K.; Yokoyama, T. Appl. Clay Sci. 1999, 15, 281 https://doi.org/10.1016/S0169-1317(99)00021-6
  26. Girtu, M.; Wynn, C. M.; Fujita, W.; Awaga, K.; Epstein, A. J. J. Appl. Phys. 1998, 83, 7378 https://doi.org/10.1063/1.367801
  27. Girtu, M.; Wynn, C. M.; Fujita, W.; Awaga, K.; Epstein, A. J. Phys. Rev. 1998, B57, R11058
  28. Girtu, M.; Wynn, C. M.; Fujita, W.; Awaga, K.; Epstein, A. J. Phys. Rev. 2000, B61, 4117
  29. Laget, V.; Hornick, C.; Rabu, P.; Drillon, M. J. Mater. Chem. 1999, 9, 169 https://doi.org/10.1039/a805870i
  30. Laget, V.; Hornick, C.; Rabu, P.; Drillon, M.; Turek, P.; Ziessel, R. Adv. Mater. 1998, 10, 1024 https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1024::AID-ADMA1024>3.0.CO;2-C
  31. Laget, V.; Drillon, M.; Hornick, C.; Trabu, P.; Romero, F.; Turek, P.; Ziessel, R. J. Alloys and Compounds 1997, 262-263, 423 https://doi.org/10.1016/S0925-8388(97)00347-2
  32. Hornick, C.; Rabu, P.; Drillon, M. Polyhedron 2000, 19, 259 https://doi.org/10.1016/S0277-5387(99)00355-1
  33. Kurmoo, M. Chem. Mater. 1999, 11, 1546 https://doi.org/10.1021/cm980781r
  34. Kurmoo, M. Chem. Mater. 1999, 11, 3370 https://doi.org/10.1021/cm991099f
  35. Kurmoo, M. J. Mater. Chem. 1999, 9, 2595 https://doi.org/10.1039/a902807b
  36. Huang, Z.-L.; Drillon, M.; Masciocchi, N.; Sironi, A.; Zhao, J.-T.; Rabu, P.; Panissod, P. Chem. Mater. 2000, 12, 2805 https://doi.org/10.1021/cm000386c
  37. Rabu, P.; Drillon, M.; Hornick, C. Analusis 2000, 28, 103 https://doi.org/10.1051/analusis:2000280103
  38. Rabu, P.; Drillon, M. Adv. Eng. Mater. 2003, 5, 189 https://doi.org/10.1002/adem.200310082
  39. Kurmoo, M.; Day, P.; Derory, A.; Estoures, C.; Poinsot, R.; Stead, M. J.; Kepert, C. J. J. Sol. State Chem. 1999, 145, 452 https://doi.org/10.1006/jssc.1999.8147
  40. Taibi, M.; Ammar, S.; Jouini, N.; Fievet, F.; Molinie, P.; Drillon, M. J. Mater. Chem. 2002, 12, 3238 https://doi.org/10.1039/b204087e
  41. Park, S.-H.; Lee, C. H.; Lee, C. E.; Ri, H.-C.; Shim, S. Y. Mater. Res. Bull. 2002, 37, 1773 https://doi.org/10.1016/S0025-5408(02)00847-4
  42. Park, S.-H.; Lee, C. E. J. Phys. Chem. 2005, B109, 1118
  43. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley & Sons: New York, 1997
  44. Colthup, N. B. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Academic Press: 1990
  45. Effenberger, H. Z. Kristallogr. 1983, 165, 127 https://doi.org/10.1524/zkri.1983.165.1-4.127
  46. Tarte, P. Spectrochim. Acta 1958, 13, 107 https://doi.org/10.1016/0371-1951(58)80013-2
  47. Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin-Heidelberg, 1986
  48. Eltner, N.; Singh, R. R. P.; Young, A. P. Phys. Rev. Lett. 1993, 71, 1629 https://doi.org/10.1103/PhysRevLett.71.1629
  49. Takeda, T.; Bando, Y.; Kiyama, M.; Miyamoto, H. J. Phys. Soc. Jpn. 1966, 21, 2726 https://doi.org/10.1143/JPSJ.21.2726
  50. Takeda, T.; Bando, Y.; Kiyama, M.; Miyamoto, H. J. Phys. Soc. Jpn. 1966, 21, 2745 https://doi.org/10.1143/JPSJ.21.2745
  51. Miyamoto, H.; Shinjo, T.; Bando, Y.; Takeda, T. J. Phys. Soc. Jpn. 1967, 23, 1421 https://doi.org/10.1143/JPSJ.23.1421
  52. Drillon, M.; Panissod, P. J. Magn. Magn. Mater. 1998, 188, 93 https://doi.org/10.1016/S0304-8853(98)00180-2

Cited by

  1. Bis(2-phenylethylammonium) tetrachloridocobaltate(II) vol.67, pp.5, 2011, https://doi.org/10.1107/S1600536811011603
  2. vol.41, pp.4, 2012, https://doi.org/10.1039/C1DT11544H
  3. The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.768
  4. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure vol.2014, pp.1687-7993, 2014, https://doi.org/10.1155/2014/710487
  5. Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes vol.33, pp.37, 2017, https://doi.org/10.1021/acs.langmuir.7b00588
  6. A Novel Hybrid Constructed by the Fabrication of Exfoliated Cu-LHs Nanosheets and MnTSPP Anions vol.46, pp.1, 2017, https://doi.org/10.1246/cl.160811
  7. Magnetic properties of ordered nanowires of the quasi-two-dimensional antiferromagnet SpFeMn(C2O4)3 vol.52, pp.10, 2010, https://doi.org/10.1134/s1063783410100197
  8. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst vol.187, pp.1, 2006, https://doi.org/10.1016/j.jhazmat.2011.01.027