DOI QR코드

DOI QR Code

Chemical Vapor Deposition Polymerization of Poly(arylenevinylene)s and Applications to Nanoscience

  • Joo, Sung-Hoon (Department of Chemistry and Center for Electro- and Photo- Responsive Molecules, Korea University) ;
  • Lee, Chun-Young (Department of Chemistry and Center for Electro- and Photo- Responsive Molecules, Korea University) ;
  • Kim, Kyung-kon (Department of Chemistry and Center for Electro- and Photo- Responsive Molecules, Korea University) ;
  • Lee, Ki-Ryong (Department of Chemistry and Center for Electro- and Photo- Responsive Molecules, Korea University) ;
  • Jin, Jung-Il (Department of Chemistry and Center for Electro- and Photo- Responsive Molecules, Korea University)
  • Published : 2006.02.20

Abstract

A review is made on the chemical vapor deposition polymerization (CVDP) of insoluble and infusible poly(arylenevinylene)s and its applications to nanoscience. Poly(p-phenylenevinylene) (PPV), poly(naphthylenevinylene)s, poly(2,5-thinenylenevinylene) (PTV), and other homologous polymers containing oligothiophenes could be prepared by the CVDP method in the form of films, tubes, and fibers of nano dimensions. They would be readily converted to graphitic carbons of different structures by thermal treatment. Field emission FE) of carbonized PPV nanotubes, photoconductivity of carbonized PPV/PPV bilayer nanotubes and nanofilms also were studied.

Keywords

References

  1. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121 https://doi.org/10.1038/16393
  2. Kim, K.; Jin, J.-I. Nano Lett. 2001, 1, 631 https://doi.org/10.1021/nl010055e
  3. Berlin, A.; Zotti, G.; Zecchin, S.; Schiavon, G. Macro. Chem. Phys. 2002, 203, 1228 https://doi.org/10.1002/1521-3935(200206)203:9<1228::AID-MACP1228>3.0.CO;2-T
  4. Cavallaro, S.; Colligiani, A.; Fotis, C. G. J. Therm. Anal. Calorim. 1995, 44, 269 https://doi.org/10.1007/BF02636118
  5. Joo, J.; Lee, S. J.; Park, D. H.; Lee, J. Y.; Lee, T. J.; Seo, S. H.; Lee, C. J. Electrochem. Solid- State Lett. 2005, 8, H39 https://doi.org/10.1149/1.1869152
  6. Shim, H.-K.; Jin, J.-I.; Lenz, R. W. Makromol. Chem. 1989, 190, 389 https://doi.org/10.1002/macp.1989.021900216
  7. Murase, I.; Ohnishi, T.; Noguchi, T.; Hirooka, M. Polym. Commun. 1987, 28, 229
  8. Xie, H.-Q.; Liu, C.-M.; Guo, J.-S. Eur. Polym. J. 1996, 32, 1131 https://doi.org/10.1016/0014-3057(96)00049-3
  9. Kim, K.; Lee, S. H.; Yi, W.; Kim, J.; Choi, J. W.; Park, Y. S.; Jin, J.-I. Adv. Mater. 2003, 15, 1618 https://doi.org/10.1002/adma.200305242
  10. Yanagishita, H.; Nakane, T.; Nozoye, h.; Yoshitome, H. J. Appl. Polym. Sci. 1993, 49, 565 https://doi.org/10.1002/app.1993.070490402
  11. Cheng, S. Z. D.; Wu, Z. Q.; Wunderlich, B. Macromolecules 1987, 20, 2802 https://doi.org/10.1021/ma00177a028
  12. Yang, Y.; Pei, Q. J. Appl. Phys. 1996, 79, 934 https://doi.org/10.1063/1.360875
  13. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539 https://doi.org/10.1038/347539a0
  14. Bjornholm, T.; Hassenkam, T.; Greve, D. R.; McCullough, R. D.; Jayaraman, M.; Savoy, S. M.; Jones, C. E.; McDevitt, J. T. Adv. Mater. 1999, 11, 1218 https://doi.org/10.1002/(SICI)1521-4095(199910)11:14<1218::AID-ADMA1218>3.0.CO;2-G
  15. Yang, Y.; Pei, Q. J. Appl. Phys. 1996, 79, 934 https://doi.org/10.1063/1.360875
  16. Zhu, W.; Mo, Y.; Yuan, M.; Yang, W.; Cao, Y. Appl. Phys. Lett. 2002, 80, 2045 https://doi.org/10.1063/1.1461418
  17. Yang, H. C.; Shin, T. J.; Yang, L.; Cho, K.; Ryu, C. Y.; Bao, Z. N. Adv. Funt. Mater. 2005, 15, 671 https://doi.org/10.1002/adfm.200400297
  18. Hoshino, S.; Yoshida, M.; Uemura, S.; Takada, N.; Toshihide, K.; Yase, K. J. Appl. Phys. 2004, 95, 5088 https://doi.org/10.1063/1.1691190
  19. Kang, J.-G.; Kim, T.-J.; Park, C.; Woo, L. S.; Kim, I. T. Bull. Korean Chem. Soc. 2004, 25, 704 https://doi.org/10.5012/bkcs.2004.25.5.704
  20. Nam, N. P. H.; Prasad, V.; Cha, S. W.; Lee, D. W.; Jin, J.-I. Bull. Korean Chem. Soc. 2002, 23, 1470 https://doi.org/10.5012/bkcs.2002.23.10.1470
  21. Yoshino, K.; Takahashi, H.; Muro, K.; Ohmori, Y. J. Appl. Phys. 1991, 70, 5035 https://doi.org/10.1063/1.349008
  22. Heywang, G.; Jonas, F. Adv. Mater. 1992, 4, 116 https://doi.org/10.1002/adma.19920040213
  23. Jonas, F.; Krafft, W.; Muys, B. Macromol. Symp. 1995, 100, 169 https://doi.org/10.1002/masy.19951000128
  24. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121 https://doi.org/10.1038/16393
  25. Kim, J. H.; Lee, H. Bull. Korean Chem. Soc. 2004, 25, 652 https://doi.org/10.5012/bkcs.2004.25.5.652
  26. Ko, W. S.; Jung, B.-J.; Jo, N. S.; Shim, H.-K. Bull. Korean Chem. Soc. 2002, 23, 1235 https://doi.org/10.5012/bkcs.2002.23.9.1235
  27. Kim, Y.-H.; Bark, K.-M.; Kwon, S.-K. Bull. Korean Chem. Soc. 2002, 22, 975
  28. Jin, Y.; Kim, J.; Song, S.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 855 https://doi.org/10.5012/bkcs.2005.26.5.855
  29. Holmes, A. B.; Grimsdale, A. C.; Kraft, A. Angew. Chem. Int. Ed. 1998, 37, 402 https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-9
  30. Wessling, R. A.; Zimmerman, R. G. U.S. Pat. 1968, 3, 401,152
  31. Wessling, R. A.; Zimmerman, R. G. U.S. Pat. 1970, 3, 532,643
  32. Wessling, R. A. J. Polym. Sci. Polym. Symp. 1985, 72, 55 https://doi.org/10.1002/polc.5070720109
  33. Cho, B. R. Prog. Polym. Sci. 2002, 27, 307 https://doi.org/10.1016/S0079-6700(01)00036-3
  34. Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 9708 https://doi.org/10.1021/ja00050a088
  35. Pu, L.; Wagaman, M. W.; Grubbs, R. H. Macromolecules 1996, 29, 1138 https://doi.org/10.1021/ma9500143
  36. Miao, Y. J.; Bazan, G. C. J. Am. Chem. Soc. 1994, 116, 9379 https://doi.org/10.1021/ja00099a085
  37. Denton, F. R.; Lahti, P. M. In Photonic Polymer Systems-Fundamentals, Methods, and Applications; ed. by Wise, D. L.; Wnek, G. E.; Trantolo, D. J.; Cooper, T. M.; Gresser, J. D., Eds.; Marcel Dekker Inc.: New York, 1998; Chapter 3
  38. Starings, E. G.; Braun, J. D.; Rikken, G. L. J. A.; Demandt, R. J. C. E.; Kessener, Y. A. R. R.; Bouwmans, M.; Broer, D. Synth. Met. 1994, 67, 71 https://doi.org/10.1016/0379-6779(94)90013-2
  39. Greiner, A.; Schafer, O.; Pommerehne, J.; Guss, W.; Vestweber, H.; Wendorff, J. H.; Tak, H. Y.; Bassler, H.; Schmidt, C.; Lussem, G.; Schartel, B.; Stumpflen, V.; Spiess, H. W.; Moller, C.; Spiegel, S. Synth. Met. 1996, 82, 1 https://doi.org/10.1016/S0379-6779(97)80001-X
  40. Iwatsuki, S.; Kubo, M.; Kumeuchi, T. Chem. Lett. 1991, 1031
  41. Schafer, O.; Greiner, A. Unpublished results but cited in ref. 29
  42. Li, A.-K.; Janarthanan, N.; Hsu, C.-S. Polym. Bull. 2000, 45, 129 https://doi.org/10.1007/s002890070040
  43. Errede, L. A.; Szware, M. Quart. Rev. Chem. Soc. 1959, 12, 301 https://doi.org/10.1039/qr9581200301
  44. Gorham, W. F. J. Polym. Sci. 1966, 4, 3027 https://doi.org/10.1002/pol.1966.150041209
  45. Gorham, W. F. U.S. Pat. 1966, 3, 288,728
  46. Lee, C. J. Macromol. Sci. Rev. Macromol. Chem. 1977-1978, C16, 79
  47. Surendran, G.; Gazicki, M.; James, W. J.; Yasuda, H. J. Polym. Chem. Ed. 1987, 25, 1481 https://doi.org/10.1002/pola.1987.080250604
  48. Greiner, A.; Mung, A.; Schäfer, U.; Simon, P. Acta Polym. 1997, 48, 1 https://doi.org/10.1002/actp.1997.010480101
  49. Liu, A. P.; Fletcher, D. A. Nano Lett. 2005, 5, 625 https://doi.org/10.1021/nl0478878
  50. Shklover, V. Chem. Mater. 2005, 17, 608 https://doi.org/10.1021/cm048870t
  51. Rothemund, P. W. K.; Ekani-Nkodo, A.; Papadakis, N.; Kumar, A.; Fygenson, D. K.; Winfree, E. J. Am. Chem. Soc. 2004, 126, 16344 https://doi.org/10.1021/ja044319l
  52. Cheng, W. L.; Dong, S. J.; Wang, E. K. J. Phys. Chem. B 2004, 108, 19146 https://doi.org/10.1021/jp0466237
  53. Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nat. Mater. 2004, 3, 823 https://doi.org/10.1038/nmat1211
  54. Cho, J.; Char, K.; Hong, J. D.; Lee, K. B. Adv. Mater. 2001, 13, 1076 https://doi.org/10.1002/1521-4095(200107)13:14<1076::AID-ADMA1076>3.0.CO;2-M
  55. Jang, J.; Oh, J. H. Chem. Commun. 2004, 882
  56. Fu, M.; Chen, F.; Zhang, J.; Shi, G. J. Mater. Chem. 2002, 12, 2331 https://doi.org/10.1039/b201405j
  57. Martin, C. R. Science 1994, 266, 1961 https://doi.org/10.1126/science.266.5193.1961
  58. Smith, R. C.; Fisher, W. M.; Gin, D. L. J. Am. Chem. Soc. 1997, 119, 4092 https://doi.org/10.1021/ja963837w
  59. Jang, J.; Yoon, H. Chem. Commun. 2003, 720
  60. Zhang, Z.; Wei, Z.; War, M. Macromolecules 2002, 35, 5937 https://doi.org/10.1021/ma020199v
  61. Guo, L.; Wu, Z.; Liang, Y. Chem. Commun. 2004, 1664
  62. Tung, N. T.; Yu, Y. J.; Kim, K.; Joo, S. H.; Park, Y.; Jin, J.-I. J. Polym. Sci. Pol. Chem. 2005, 43, 742 https://doi.org/10.1002/pola.20537
  63. Lee, K.-R. MS thesis; Chemistry Department, Korea University, Seoul, Korea, Feb. 2004
  64. Joo, S.-H. Ph. D. thesis; Chemistry Department, Korea University, Seoul, Korea, Feb. 2005
  65. Lee, K.-R.; Jeong, S.-H.; Kim, K.; Jin, J.-I. Macromol. Symp. In press
  66. Park, J.-S. MS thesis; Chemistry Department, Korea University, Seoul, Korea, Feb. 2005
  67. Weitzel, H. P.; Bohnen, A.; Müllen, F. Makromol. Chem. 1990, 191, 2815 https://doi.org/10.1002/macp.1990.021911130
  68. Vaeth, K. M.; Jensen, K. F. Adv. Mater. 1997, 9, 490 https://doi.org/10.1002/adma.19970090608
  69. Vaeth, K. M.; Jensen, K. F. Macromolecules 2000, 33, 5336 https://doi.org/10.1021/ma0004108
  70. Vaeth, K. M.; Jensen, K. F. Macromolecules 1998, 31, 6789 https://doi.org/10.1021/ma9805755
  71. Chen, D.; Winokur, M. J.; Masse, M. A.; Karasz, F. E. Polymer 1992, 33, 3116 https://doi.org/10.1016/0032-3861(92)90223-J
  72. Kim, K.; Jung, M. Y.; Zhong, G. L.; Jin, J.-I.; Kim, T. Y.; Ahn, D. J. Synth. Met. 2004, 144, 7 https://doi.org/10.1016/j.synthmet.2004.01.004
  73. Kim, K.; Jin, J.-I. Unpublished results
  74. Nguyen, T. Q.; Wu, J.; Tolbert, S. H.; Schwartz, B. J. S. Adv. Mater. 2001, 13, 609 https://doi.org/10.1002/1521-4095(200104)13:8<609::AID-ADMA609>3.0.CO;2-#
  75. Wu, J.; Gross, A. F.; Tolbert, S. H. J. Phys. Chem. B 1999, 103, 2374 https://doi.org/10.1021/jp984070s
  76. Kim, K.; Jeoung, S. C.; Lee, J.; Hyeon, T.; Jin, J.-I. Macromol. Symp. 2003, 201, 119 https://doi.org/10.1002/masy.200351114
  77. Heller, C. M.; Campbell, I. H.; Laurich, B. K.; Smith, D. L.; Bradley, D. D. C.; Burn, P. L.; Ferraris, J. P.; Mullen, K. Phys. Rev. B: Condens. Matter. 1996, 54, 5516 https://doi.org/10.1103/PhysRevB.54.5516
  78. Ueno, H.; Yoshino, K. Phys. Rev. B: Condens. Matter. 1986, 34, 7158 https://doi.org/10.1103/PhysRevB.34.7158
  79. Kim, K. Ph. D. thesis; Chemistry Department, Korea University, Seoul, Korea, Feb. 2003
  80. Ferrari, A. C.; Robertson, J. Phys. Rev. B : Condens. Matter 2000, 61, 14095 https://doi.org/10.1103/PhysRevB.61.14095
  81. Kim, K.; Zhong, G. L.; Jin, J.-I. Macromol. Symp. 2003, 195, 217 https://doi.org/10.1002/masy.200390125
  82. Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smallery, R. E. Nature 1996, 384, 147 https://doi.org/10.1038/384147a0
  83. de Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270, 1179 https://doi.org/10.1126/science.270.5239.1179
  84. Fowler, R. H.; Nordheim, L. Proc. Roy. Soc. London 1928, A119, 173
  85. Wadhawan, A.; Stallcup, R. E.; Perez, J. M. Appl. Phys. Lett. 2001, 78, 208
  86. Bonard, J. M.; Weiss, N.; Kind, H.; Stockli, T.; Forro, L.; Kern, K.; Chatelain, A. Adv. Mater. 2001, 13, 184 https://doi.org/10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I
  87. Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Stolka, M.; Jenekhe, S. A. Abst. Am. Chem. Soc. 1993, 206, 105
  88. Park, H.; Choi, Y. S.; Park, Y. W.; Park, C. K.; Jin, J.-I.; Kaiser, G.; Roth, S. Synth. Met. 1997, 84, 965 https://doi.org/10.1016/S0379-6779(96)04232-4
  89. Kim, K.; Kim, B. H.; Joo, S.-H.; Park, J.-S.; Joo, J.; Jin, J.-I. Adv. Mater. 2005, 17, 464 https://doi.org/10.1002/adma.200400977
  90. Song, M. Y.; Kim, J. K.; Kim, K. J.; Kim, D. Y. Synth. Met. 2003, 137, 1387 https://doi.org/10.1016/S0379-6779(02)01153-0
  91. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138 https://doi.org/10.1038/nmat1299
  92. Bakulin, A. A.; Elizarov, S. G.; Khodarev, A.; Martyanov, D. S.; Golovnin, I.; Paraschuk, D. Y.; Triebel, M. M.; Tolstov, I.; Frankevich, E. L.; Arnautov, S. A.; Nechvolodova, E. M. Synth. Met. 2004, 147, 221 https://doi.org/10.1016/j.synthmet.2004.05.023
  93. Sohn, Y.; Richter, J.; Ament, J.; Stuckless, J. T. Appl. Phys. Lett. 2004, 84, 76 https://doi.org/10.1063/1.1638897
  94. Suh, D. J.; Park, O. O.; Ahn, T.; Shim, H. K. Opt. Mater. 2003, 21, 365 https://doi.org/10.1016/S0925-3467(02)00168-4
  95. Kroeze, J. E.; Savenije, T. J.; Vermeulen, M. J. W.; Warman, J. M. J. Phys. Chem. B 2003, 107, 7696 https://doi.org/10.1021/jp0217738
  96. Hartmann, T.; Schrof, W.; Belov, V.; Mohwald, H.; Barth, S.; Van Keuren, E.; Mahrt, R. F. Phys. Rev. B 2001, 64, 235205 https://doi.org/10.1103/PhysRevB.64.235205
  97. Hwang, I. W.; Song, N. W.; Park, Y. T.; Kim, D.; Kim, Y. R. Eur. Polym. J. 1998, 34, 335 https://doi.org/10.1016/S0014-3057(97)00140-7
  98. Yoshino, K.; Yin, X. H.; Morita, S.; Kawai, T.; Zakhidov, A. A. Solid State. Commun. 1993, 85, 85 https://doi.org/10.1016/0038-1098(93)90352-N
  99. Alem, S.; De Bettignies, R.; Nunzi, J. M.; Cariou, M. Appl. Phys. Lett. 2004, 84, 2178 https://doi.org/10.1063/1.1669065
  100. Gao, J.; Hide, F.; Wang, H. L. Synth. Met. 1997, 84, 979 https://doi.org/10.1016/S0379-6779(96)04240-3
  101. Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2004, 84, 3013 https://doi.org/10.1063/1.1713036
  102. Mulazzi, E.; Perego, R.; Aarab, H.; Mihut, L.; Lefrant, S.; Faulques, E.; Wery, J. Phys. Rev. B 2004, 70, 155206 https://doi.org/10.1103/PhysRevB.70.155206
  103. Ahn, Y. J.; Kang, G. W.; Lee, C. H.; Yeom, I. S.; Jin, S. H. Synth. Met. 2003, 137, 1447 https://doi.org/10.1016/S0379-6779(02)01174-8
  104. Stubinger, T.; Brutting, W. J. Appl. Phys. 2001, 90, 3632 https://doi.org/10.1063/1.1394920
  105. Joo, S.-H.; Jin, J.-I. Unpublished results; In preparation
  106. Sharama, G. D.; Gupta, S. K.; Roy, M. S. Thin Solid Films 1998, 333, 176 https://doi.org/10.1016/S0040-6090(98)00841-4
  107. Fortin, J. B.; Lu, T.-M. Chemical Vapor Deposition Polymerization-The Growth and Properties of Parylene Thin Films; Kluwer Academic Publishers: New York, U.S.A., 2004
  108. Moore, J. A.; Lang, C.-I.; Lu, T.-M.; Yang, G. R. Polym. Mater. Sci. Eng. 1995, 72, 437
  109. Strunskus, T.; Grunze, M. In Polyimids: Fundamental and Applications; Ghosh, M. K., Mittal, K. L. Eds.; Marcel Dekker: New York, 1996; p 187
  110. Nason, T. C.; Moore, J. A.; Lu, T.-M.; Appl. Phys. Lett. 1992, 60, 1866 https://doi.org/10.1063/1.107163
  111. Moore, J. A.; Lang, C.-I.; Lu, T.-M.; Yang, G. R. In ACS Symposium Series; 1995, 614, 449, American Chem. Soc, Washington D.C., U.S.A., 1995; p 614, 449
  112. Lee, C.-Y.; Lee, C.-H.; Do, E.-D.; Jin, J.-I. Unpublished results
  113. Buchachenko, A. L.; Khloplyankina, M. S.; Dobryakov, S. N. Opt. Spectrosc+. 1967, 22, 304
  114. Fortin, J. B.; Lu, T.-M. Chem. Mater. 2002, 14, 1945 https://doi.org/10.1021/cm010454a

Cited by

  1. Structure and optical characteristics of poly(p-phenylenevinylene) prepared by vapor deposition polymerization vol.52, pp.3-4, 2010, https://doi.org/10.1134/S156009041003005X