DOI QR코드

DOI QR Code

Substrate Construes the Copper and Nickel Ions Impacts on the Mushroom Tyrosinase Activities

  • Gheibi, N. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Haghbeen, K. (The National Research Center for Genetic Engineering and Biotechnology)
  • Published : 2006.05.20

Abstract

Mushroom tyrosinase (MT) structural changes in the presence of $Cu ^{2+}$ and $Ni ^{2+}$ were studied separately. Far-UV CD spectra of the incubated MT with the either of the metal ions indicated reduction of the well-ordered secondary structure of the enzyme. Increasing in the maximum fluorescence emission of anilinonaphthalene-8-sulfonic acid (ANS) was also revealing partial unfolding caused by the conformational changes in the tertiary structure of MT. Thermodynamic studies on the chemical denaturation of MT by dodecyl trimethylammonium bromide (DTAB) showed decrease in the stability of MT in the presence of $Cu ^{2+}$ or $Ni ^{2+}$ using their activation concentrations. Both activities of MT were also assessed in the presence of different concentrations of these ions, separately, with various monophenols and their corresponding diphenols. Kinetic studies revealed that cresolase activity on p-coumaric acid was boosted in the presence of either of the metal ions, but inhibited when phenol, L-tyrosine, or 4-[(4-methylphenyl)azo]-phenol was substrate. Similarly, catecholase activity on caffeic acid was enhanced in the presence of $Cu ^{2+}$ or $Ni ^{2+}$, but inhibited when catechol, L-DOPA, or 4-[(4-methylbenzo)azo]-1,2-benzenediol was substrate. Results of this study suggest that both cations make MT more fragile and less active. However, the effect of the substrate structure on the MT allosteric behavior can not be ignored.

Keywords

References

  1. Mason, H. S. Advan. Enzymol. 1957, 19, 79
  2. Yasunobu, K. T. Mode of Action of Tyrosinase Pigmentin Cell Biology; Gordon, M. Ed.; Academic Press: NewYork, 1959
  3. Raper, H. S. Physiol. Rev. 1928, 8, 245
  4. Martinez, M. V.; Whtaker, J. R. Trends Food Sci. Technol. 1995, 6, 195 https://doi.org/10.1016/S0924-2244(00)89054-8
  5. Ahmad, F.Biochem. Biophys. Acta 1996, 1294, 63
  6. Handbook of Metal-ligand Interactions in Biological Fluids; Berthon, G., Ed.; Marcel Dekker: New York, 1995; Vol. 1
  7. Suresh, K.; Subramanyam, C. J. Inorg. Biochem. 1998, 69, 209 https://doi.org/10.1016/S0162-0134(97)10001-0
  8. White, L. P. Nature 1958, 182, 1427 https://doi.org/10.1038/1821427a0
  9. Sarna, T.; Korytowski, W.; Pasenkiewicz-Gierula, M.; Godowska,E. In Pigment Cell; Seiji, M., Ed.; University of Tokyo Press:Tokyo, 1981
  10. Palumbo, A.; d'Ischia, M.; Misuraca, G.; Prota, G.; Schultz, T. M.Biochim. Biophys. Acta 1998, 964, 193
  11. Palumbo, A.; d'Ischia, M.; Misuraca, G.; Prota, G. Biochim.Biophys. Acta 1987, 925, 203 https://doi.org/10.1016/0304-4165(87)90110-3
  12. Flesch, P. Proc. Soc. Exp. Biol. Med. 1949, 70, 79
  13. Bowness, J. M.; Morton, R. A. Biochem. J. 1953, 53, 620
  14. Bowness, J. M.; Morton, R. A.; Shakir, M. H.; Stubbs, A. L.Biochem. J. 1952, 51, 521
  15. Dorea, J. G.; Pereira, S. E. J. Nut. 1983, 113, 2375
  16. Molokhia, M. M.; Portnoy, B. Br. J. Dermatol.1973, 88, 347
  17. Horcicko, J.; Borovansky, J.; Duchon, J.; Prochazkova, B. Hoppe-Seyler's Z. Physiol. Chem. 1983, 354, 203
  18. Seo, S. Y.; Sharma, V. K.; Sharma, N. J. Agric. Food Chem. 2003, 51, 2837 https://doi.org/10.1021/jf020826f
  19. Van Gelder, C. W. G.; Flurkey, W. H.; Wichers, H. J. Phytochemistry 1997, 45, 1309 https://doi.org/10.1016/S0031-9422(97)00186-6
  20. Gheibi, N.; Saboury, A. A.; Haghbeen, K.; Moosavi-Movahedi,A. A. Colloids and Surfaces B: Biointerfaces 2005, 45, 104 https://doi.org/10.1016/j.colsurfb.2005.08.001
  21. Karbassi, F.; Haghbeen, K.; Saboury, A. A.; Rezaei-Tavirani, M.;Ranjbar, B. Biologia 2004, 59, 319
  22. Karbassi, F.; Haghbeen, K.; Saboury, A. A.; Ranjbar, B.;Moosavi-Movahed, A. A. Colloids and Surfaces B: Biointerfaces 2003, 32, 137 https://doi.org/10.1016/S0927-7765(03)00153-X
  23. Linder, M. C. In Biochemistry of Copper; Plenum: New York,1991
  24. Lee, Y.; Won, H.; Lee, M.; Lee, B. FEBS Letters 2002, 522, 135 https://doi.org/10.1016/S0014-5793(02)02919-8
  25. Takahashi, K.; Akaishi, E.; Yumiko, A.; Ishikawa, R.; Tanaka, S.;Hosaka, K.; Kubohara, Y. Biochem. Biophys. Res. Comm. 2003, 307, 64 https://doi.org/10.1016/S0006-291X(03)01122-7
  26. Li, S.; Nakagawa, A.; Tsukihara, T. Biochem. Biophys. Res.Comm. 2003, 324, 529 https://doi.org/10.1016/j.bbrc.2004.09.078
  27. Buzadzic, B.; Korac, B.; Lazic, T.; Obradovic, D. Food Res. Inter. 2002, 35, 217 https://doi.org/10.1016/S0963-9969(01)00187-9
  28. Palumbo, A.; Misuraca, G.; D'Ischia, M.; Prota, G. Biochem. J. 1985, 228, 647
  29. Haghbeen, K.; Tan, E. W. J. Org. Chem. 1998, 63, 4503 https://doi.org/10.1021/jo972151z
  30. Gheibi, N.; Saboury, A. A.; Mansuri-Torshizi, H.; Haghbeen, K.;Moosavi-Movahedi,A. A. J. Enz. Inh. Medi. Chem. 2005, 20, 393 https://doi.org/10.1080/14756360500179903
  31. Haghbeen, K.; Tan, E. W. Anal. Biochem. 2003, 312, 23 https://doi.org/10.1016/S0003-2697(02)00408-6
  32. Strothkamp, K. J.; Jolley, R. L.; Mason, H. S. Biochem. Biophys. Res. Commun. 1976, 70, 519 https://doi.org/10.1016/0006-291X(76)91077-9
  33. Kelly, S. M.; Price, N. C.Biochem. Biophys. Acta 1997, 1338,161
  34. Pace, C. N. Crit. Rev. Biochem. 1975, 3, 1 https://doi.org/10.3109/10409237509102551
  35. Pace, C. N. Methods Enzymol. 1986, 13, 266
  36. Pace, C. N. Trends Biotechnol. 1990, 8, 93 https://doi.org/10.1016/0167-7799(90)90146-O
  37. Ahmad, F. J. Iran Chem. Soc. 2004, 1, 99 https://doi.org/10.1007/BF03246101
  38. Cicero, R.; Gallone, A.; Maida, I.; Pintucci, G. Comp. Biochem. Physiol. 1990, 96, 393
  39. Young, G.; Leone, C.; Strothkamp, K. G. Biochemistry 1990, 29, 9684 https://doi.org/10.1021/bi00493a025
  40. Rodionova, N. A.; Semisotnov, G. V.; Kutyshenko, V. P.; Uversky,V. N.; Bolotina, I. A. Mol. Biol. (Mosc) 1989, 23, 683
  41. Semisotnov, G. V.; Rodionova, N. A.; Razgulyaev, O. I.; Uversky,V. N.; Gripas, A. F.; Gilmanshin, R. I. Biopolymers 1991, 31, 119 https://doi.org/10.1002/bip.360310111
  42. Fink, A. L. In The Encyclopedia of Molecular Biology;Creighton,T. E., Ed.; John Wiley & Sons, Inc.: New York, 1999
  43. Uversky, V. N.; Li, J.; Fink, A. L. J. Biol. Chem. 2001, 276, 10737 https://doi.org/10.1074/jbc.M010907200
  44. Pifferi, P. G.; Baldassari, L.; Cultera, R. J. Sci. Food Agric. 1974, 25, 263 https://doi.org/10.1002/jsfa.2740250306
  45. Janovitz-Klapp, A.; Richard, F.; Goupy, P.; Nicolas, J. J. Agric. Food Chem. 1990, 38, 926 https://doi.org/10.1021/jf00094a002
  46. Janovitz-Klapp, A.; Richard, F.; Nicolas, J. Phytochemistry 1989, 28, 2903 https://doi.org/10.1016/0031-9422(89)80250-X
  47. Nardini, M.; Natella, F.; Gentili, V.; DiFelice, M.; Scaccini, C.Arch. Biochem. Biophys. 1997, 342, 157 https://doi.org/10.1006/abbi.1997.9977
  48. Shareefi-Borojerdi, S.; Haghbeen, K.; Karkhane, A. A.; Fazli, M.;Saboury, A. A. Biochem. Biophys. Res. Comm. 2004, 314, 925 https://doi.org/10.1016/j.bbrc.2003.12.197

Cited by

  1. Dual effects of aliphatic carboxylic acids on cresolase and catecholase reactions of mushroom tyrosinase vol.24, pp.5, 2009, https://doi.org/10.1080/14756360802632658
  2. on Mushroom Tyrosinase: Kinetic and Structural Stability vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1500
  3. Inhibitory Effects of a Palladium Complex on the Activity, Stability, and Structure of Tyrosinase Enzyme vol.1, pp.3, 2006, https://doi.org/10.17795/bhs-26373