DOI QR코드

DOI QR Code

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju (Department of Bio and Nanochemistry, Kookmin University) ;
  • Kim, Dong-Eun (Department of Biotechnology and Bioengineering, and Department of Biomaterial Control, Dong-Eui University)
  • Published : 2006.02.20

Abstract

Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Keywords

References

  1. Brennan, C. A.; Dombroski, A. J.; Platt, T. Cell 1987, 48, 945 https://doi.org/10.1016/0092-8674(87)90703-3
  2. Geiselmann, J.; Wang, Y.; Seifried, S. E.; von Hippel, P. H. Proc. Natl. Acad. Sci. USA 1993, 90, 7754 https://doi.org/10.1073/pnas.90.16.7754
  3. Bogden, C. E.; Fass, D.; Bergman, N.; Nichols, M. D.; Berger, J. M. Molecular Cell 1999, 3, 487 https://doi.org/10.1016/S1097-2765(00)80476-1
  4. Burgess, B. R.; Richardson, J. P. J. Biol. Chem. 2001, 276, 41
  5. Richardson, J. P. Cell 2003, 114, 157 https://doi.org/10.1016/S0092-8674(03)00554-3
  6. Stitt, B. L. J. Biol. Chem. 1988, 263, 11130
  7. Geiselmann, J.; von Hippel, P. H. Protein Sci. 1992, 1, 850 https://doi.org/10.1002/pro.5560010703
  8. Kim, D. E.; Patel, S. S. J. Biol. Chem. 1999, 274, 32667 https://doi.org/10.1074/jbc.274.46.32667
  9. Kim, D. E.; Shigesada, K.; Patel, S. S. J. Biol. Chem. 1999, 274, 11623 https://doi.org/10.1074/jbc.274.17.11623
  10. Mori, H.; Imai, M.; Shigesada, K. J. Mol. Biol. 1989, 210, 39 https://doi.org/10.1016/0022-2836(89)90289-1
  11. Finger, L. R.; Richardson, J. P. Biochemistry 1981, 20, 1640 https://doi.org/10.1021/bi00509a036
  12. Geiselmann, J.; Yager, T. D.; von Hippel, P. H. Protein Sci. 1992, 1, 861 https://doi.org/10.1002/pro.5560010704
  13. Kim, D. E.; Patel, S. S. J. Biol. Chem. 2001, 276, 13902 https://doi.org/10.1074/jbc.M011043200
  14. Johnson, K. A. Methods in Enzymology 1995, 249, 38 https://doi.org/10.1016/0076-6879(95)49030-2
  15. Stitt, B. L.; Xu, Y. J. Biol. Chem. 1998, 273, 26477 https://doi.org/10.1074/jbc.273.41.26477
  16. Yu, X.; Jezewska, M. J.; Bujalowski, W.; Egelman, E. H. J. Mol. Biol. 1996, 259, 7 https://doi.org/10.1006/jmbi.1996.0297
  17. Jezewska, M. J.; Bujalowski, W. J. Biol. Chem. 1996, 271, 4261 https://doi.org/10.1074/jbc.271.8.4261
  18. Bujalowski, W.; Jezewska, M. J. Biochemistry 2000, 39, 2106 https://doi.org/10.1021/bi992413m
  19. Jeong, Y. J.; Kim, D. E.; Patel, S. S. J. Biol. Chem. 2004, 279, 18370 https://doi.org/10.1074/jbc.M309162200
  20. Kim, J.; Choi, J.-D.; Kim, B.-H.; Yoon, M.-Y. Bull. Kor. Chem. Soc. 2005, 26, 260 https://doi.org/10.5012/bkcs.2005.26.2.260