DOI QR코드

DOI QR Code

Intramolecular Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HF

  • Ree, Jong-baik (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Sung-Hee (Department of Chemistry Education, Chonnam National University) ;
  • Lee, Taeck-Hong (Department of Chemical Engineering, Hoseo University) ;
  • Kim, Yu-Hang (Department of Chemistry and Center for Chemical Dynamics, Inha University)
  • Published : 2006.04.20

Abstract

Intramolecular energy flow and C-$H_{methyl}$ and C-$H_{ring}$ bond dissociations in vibrationally excited toluene in the collision with HF have been studied by use of classical trajectory procedures. The energy lost by the vibrationally excited toluene upon collision is not large and it increases slowly with increasing total vibrational energy content between 20,000 and 45,000 $cm ^{-1}$. Above the energy content of 45,000 $cm ^{-1}$, however, energy loss decreases. Furthermore, in the highly excited toluene, toluene gains energy from incident HF. The temperature dependence of energy loss is negligible between 200 and 400 K. Energy transfer to or from the excited methyl C-H bond occurs in strong collisions with HF transferring relatively large amount of its translational energy (>> $k_BT$) in a single step, whereas energy transfer to the ring C-H bond occurs in a series of small steps. When the total energy content $E_T$ of toluene is sufficiently high, either C-H bond can dissociate. The C-$H_{methyl}$ dissociation probability is higher than the C-$H_{ring}$ dissociation probability. The dissociation of the ring C-H bond is not the result of the intermolecular energy flow from the direct collision between the ring C-H and HF but the intramolecular flow of energy from the methyl group to the ring C-H stretch. The C-$H_{ring}$${\cdot}{\cdot}{\cdot}$HF interaction is not important in transferring energy and in turn bond dissociation.

Keywords

References

  1. Cottrell, T. L.; McCoubrey, J. C. Molecular Energy Transfer in Gases; Butterworths: London, 1961
  2. Transfer and Storage of Energy by Molecules, Vol. 2; Burnett, G. M.; North, A. M., Eds.; Wiley: New York, 1969
  3. Smith, I. W. M. In Gas Kinetics and Energy Transfer, Vol. 2, Specialist Periodical Reports; Chemical Society, Burlington House: London, 1977; pp 1-57
  4. Yardley, J. T. Introduction to Molecular Energy Transfer; Academic: New York, 1980
  5. Lendvay, G.; Schatz, G. C. J. Phys. Chem. 1990, 94, 8864 https://doi.org/10.1021/j100389a003
  6. Lendvay, G.; Schatz, G. C. J. Phys. Chem. 1994, 98, 6530 https://doi.org/10.1021/j100077a018
  7. Lendvay, G.; Schatz, G. C. J. Chem. Phys. 1993, 98, 1034 https://doi.org/10.1063/1.464328
  8. Lendvay, G.; Schatz, G. C.; Harding, L. B. Faraday Discuss. 1995, 102, 389 https://doi.org/10.1039/fd9950200389
  9. Toselli, B. M.; Barker, J. R. J. Chem. Phys. 1992, 97, 1809 https://doi.org/10.1063/1.463168
  10. Clarke, D. L.; Oref, I.; Gilbert, R. G. J. Chem. Phys. 1992, 96, 5983 https://doi.org/10.1063/1.462639
  11. Clary, D. C.; Gilbert, R. G.; Bernshtein, V.; Oref, I. Faraday Discuss. 1995, 102, 423 https://doi.org/10.1039/fd9950200423
  12. Sevy, E. T.; Rubin, S. M.; Lin, Z.; Flynn, G. W. J. Chem. Phys. 2000, 113, 4912 https://doi.org/10.1063/1.1289247
  13. Wright, S. M. A.; Sims, I. R.; Smith, I. W. M. J. Phys. Chem. A 2000, 104, 10347 https://doi.org/10.1021/jp0014216
  14. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 2002, 116, 4858 https://doi.org/10.1063/1.1452726
  15. Lim, K. F. J. Chem. Phys. 1994, 101, 8756 https://doi.org/10.1063/1.468070
  16. Catlett, D. L. Jr.; Parmenter, C. S.; Pursell, C. J. J. Phys. Chem. 1994, 98, 3263 https://doi.org/10.1021/j100064a003
  17. Catlett, D. L. Jr.; Parmenter, C. S.; Pursell, C. J. J. Phys. Chem. 1995, 99, 7371 https://doi.org/10.1021/j100019a021
  18. Shin, H. K. J. Phys. Chem. A 1999, 103, 6030 https://doi.org/10.1021/jp9908799
  19. Shin, H. K. J. Phys. Chem. A 2000, 104, 6699 https://doi.org/10.1021/jp0009094
  20. Nilsson, D.; Nordholm, S. J. Chem. Phys. 2002, 116, 7040 https://doi.org/10.1063/1.1458925
  21. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2004, 394, 250 https://doi.org/10.1016/j.cplett.2004.06.134
  22. Ree, J.; Chang, K. S.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2003, 24, 1223 https://doi.org/10.5012/bkcs.2003.24.8.1223
  23. Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2005, 26, 1269 https://doi.org/10.5012/bkcs.2005.26.8.1269
  24. Yerram, M. L.; Brenner, J. D.; King, K. D.; Barker, J. R. J. Phys. Chem. 1990, 94, 6341 https://doi.org/10.1021/j100379a036
  25. Damm, M.; Hippler, H.; Olschewski, H. A.; Troe, J.; Willner, J. Z. Phys. Chem. 1990, 166, 129
  26. Toselli, B. M.; Brenner, J. D.; Yerram, M. L.; Chin, W. E.; King, K. D.; Barker, J. R. J. Chem. Phys. 1991, 95, 176 https://doi.org/10.1063/1.461473
  27. Damm, M.; Deckert, F.; Hippler, H.; Troe, J. J. Phys. Chem. 1991, 95, 2005 https://doi.org/10.1021/j100158a022
  28. Lenzer, T.; Luther, K.; Troe, J.; Gilbert, R. G.; Lim, K. F. J. Chem. Phys. 1995, 103, 626 https://doi.org/10.1063/1.470096
  29. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; Wiley: New York, 1967; see p 168 for the combining laws, pp 1110-1112 and 1212-1214 for D and $\sigma$
  30. Lim, K. F. J. Chem. Phys. 1994, 100, 7385 https://doi.org/10.1063/1.466882
  31. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979
  32. Xie, Y.; Boggs, J. E. J. Comp. Chem. 1986, 7, 158 https://doi.org/10.1002/jcc.540070209
  33. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations; Prentice-Hall: New York, 1971
  34. MATH/LIBRARY, Fortran Subroutines for Mathematical Applications; IMSL: Houston, 1989; p 640
  35. Shi, J.; Barker, J. R. J. Chem. Phys. 1988, 88, 6219 https://doi.org/10.1063/1.454460
  36. Bunker, D. L. Theory of Elementary Gas Reaction Rates; Pergamon: London, 1966
  37. Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1994, 101, 8535 https://doi.org/10.1063/1.468114
  38. Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. Chemical Kinetics and Dynamics, 2nd ed; Prentice Hall: Englewood Cliffs, NJ, 1998; pp 362-367

Cited by

  1. vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1494
  2. Vibrational Relaxation and Bond Dissociation of Excited Methylpyrazine in the Collision with HF vol.27, pp.10, 2006, https://doi.org/10.5012/bkcs.2006.27.10.1641
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Energy Flow and Bond Dissociation in the Collision between Vibrationally Excited Toluene and HBr vol.33, pp.3, 2006, https://doi.org/10.5012/bkcs.2012.33.3.1063
  5. Collision-induced Energy Transfer and Bond Dissociation in Toluene by H2/D2 vol.34, pp.12, 2006, https://doi.org/10.5012/bkcs.2013.34.12.3641