DOI QR코드

DOI QR Code

Degradation of Phenol with Fenton-like Treatment by Using Heterogeneous Catalyst (Modified Iron Oxide) and Hydrogen Peroxide

  • Lee, Si-hoon (Department of Chemistry, Sungkyunkwan University) ;
  • Oh, Joo-yub (Department of Chemistry, Sungkyunkwan University) ;
  • Park, Yoon-chang (Department of Chemistry, Sungkyunkwan University)
  • Published : 2006.04.20

Abstract

Goethite, hematite, magnetite and synthesized iron oxide are used as catalysts for Fenton-type oxidation of phenol. The synthesized iron oxides were characterized by X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The catalytic activity of these materials is classified according to the observed rate of phenol oxidation. The effectiveness of the catalysts followed the sequence: ferrous ion > synthesized iron oxide >> magnetite hematite > goethite. According to these results, the most effective iron oxide catalyst had the structure similar to natural hematite. The surface oxidation state of the catalyst was between magnetite and hematite (+2.5 ~ +3.0). Phenol degraded completely in 40 min at neutral pH (pH = 7). Soluble ferric and ferrous ions were not detected in the filtrate from Fenton reaction solution by AAS. The formation of hydroxyl radicals was confirmed by EPR.

Keywords

References

  1. Elizardo, K. Fighting Pollution with Hydrogen Peroxide. Pollution Eng. 1991, 106
  2. Ince, N. H.; Stefan, M. I.; Bolton, J. R. J. Adv. Oxid. Technol. 1997, 2(3), 442
  3. Legrini, O.; Oliveros, E.; Braun, A. M. Chem. Rev. 1993, 93, 671 https://doi.org/10.1021/cr00018a003
  4. Fenton, H. J. H. Jour. Chem. Soc. (Brit.) 1894, 65, 899
  5. Valentine, R. L.; Wang, H. C. A. J. of Envir. Eng. 1998, 124, 31 https://doi.org/10.1061/(ASCE)0733-9372(1998)124:1(31)
  6. Safarzadeh-Amiri, A.; Bolton, J. R.; Cater, S. R. Water Res. 1997, 31, 787 https://doi.org/10.1016/S0043-1354(96)00373-9
  7. Barb, W. G. J. Chem. Soc. 1951, 47, 462
  8. Walling, C. Acc. Chem. Res. 1975, 8, 125 https://doi.org/10.1021/ar50088a003
  9. Gallard, H.; De Laat, J.; Legube, B. Water Res. 1999, 33, 2929 https://doi.org/10.1016/S0043-1354(99)00007-X
  10. Chamarro, E.; Marco, A.; Esplugas, S. Water Res. 2001, 35, 1047 https://doi.org/10.1016/S0043-1354(00)00342-0
  11. Tang, W. Z.; Huang, C. P. Chemosphere 1996, 33, 1621 https://doi.org/10.1016/0045-6535(96)00278-0
  12. Tyre, B. W.; Watts, R. J.; Miller, G. C. J. Environ. Qual. 1991, 20, 832 https://doi.org/10.2134/jeq1991.204832x
  13. Miller, C. M.; Valentine, R. L. Water Res. 1995, 29(10), 2353 https://doi.org/10.1016/0043-1354(95)00059-T
  14. Watts, R. J.; Udell, M. D.; Rauch, P. A. Waste and Haz. Mat. 1990, 7, 335 https://doi.org/10.1089/hwm.1990.7.335
  15. Roques, H. Chemical Water Treatment, Principles and Practice; VCH Publisher, Inc.: 1996
  16. Kwon, B. G.; Lee, D. S.; Kang, N. G.; Yoon, J. Y. Water Res. 1999, 33, 2110 https://doi.org/10.1016/S0043-1354(98)00428-X
  17. Chou, S.; Huang, C. Chemosphere 1999, 38, 2719 https://doi.org/10.1016/S0045-6535(98)00474-3
  18. Saltmiras, D. A.; Lemley, A. T. J. Agric. Food Chem. 2000, 48, 6149 https://doi.org/10.1021/jf000084v
  19. Lu, M. C. Chemosphere 2000, 40, 125 https://doi.org/10.1016/S0045-6535(99)00213-1
  20. Gallard, H.; De Laat, J.; Legube, B. Wat. Res. 1999, 33, 2929 https://doi.org/10.1016/S0043-1354(99)00007-X
  21. Kochany, E. L.; Sparh, G.; Harms, S. Chemosphere 1995, 30, 9 https://doi.org/10.1016/0045-6535(94)00371-Z
  22. Kong, S. H.; Watts, R. J.; Choi, J. H. Chemosphere 1998, 37, 1473 https://doi.org/10.1016/S0045-6535(98)00137-4
  23. Park, W. Y.; Kim, Y. S.; Kong, S. H. Theo. and Appl. of Chem. Eng. 1996, 2, 2179
  24. Watts, R. J.; Udell, M. D.; Kong, S. H.; Leung, S. W. Environ. Eng. Sci. 1999, 16, 93 https://doi.org/10.1089/ees.1999.16.93
  25. Lu, M. C.; Chen, J. N.; Huang, H. H. Chemosphere 2002, 46, 131 https://doi.org/10.1016/S0045-6535(01)00076-5
  26. Khan, A. J.; Watts, R. J. Water Air Soil Pollut. 1996, 88, 247 https://doi.org/10.1007/BF00294104
  27. Lin, S. S.; Gurol, M. D. Water Sci. Technol. 1996, 34, 57
  28. Watts, R. J.; Jones, A. P.; Chen, P. H.; Kenny, A. Water Environ. Res. 1997, 69, 269 https://doi.org/10.2175/106143097X125443
  29. Huang, H. H.; Lu, M. C.; Chen, J. N. Water Res. 2001, 35, 2291 https://doi.org/10.1016/S0043-1354(00)00496-6
  30. Zinder, B.; Furrer, G.; Stumm, W. Geochimica Cosmochimica 1986, 50, 1861 https://doi.org/10.1016/0016-7037(86)90244-9
  31. Anpo, M.; Shima, T.; Kubokawa, Y. Chem. Lett. 1985, 1799
  32. Jaeger, C. D.; Bard, A. J. Phys. Chem. 1979, 83, 3144
  33. Kuino, E.; Syuji, U.; Masaya, G.; Kenji, I.; Tsuneo, S.; Hiroshi, F.; Yoshifumi, K. Langumuir 1997, 13, 2803 https://doi.org/10.1021/la9700127
  34. Howe, R. F.; Gratzel, M. J. Phys. Chem. 1985, 89, 4495 https://doi.org/10.1021/j100267a018
  35. Rajh, R.; Ostafin, A. E.; Micic, O. I.; Tiede, D. M.; Thurnauer, M. C. J. Phys. Chem. 1996, 100, 4538 https://doi.org/10.1021/jp952002p

Cited by

  1. Physicochemical Origin for Free Radical Generation of Iron Oxide Nanoparticles in Biomicroenvironment: Catalytic Activities Mediated by Surface Chemical States vol.117, pp.1, 2013, https://doi.org/10.1021/jp3101392
  2. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark vol.12, pp.9, 2013, https://doi.org/10.1039/c3pp25314g
  3. Degradation of Clopyralid by the Fenton Reaction vol.52, pp.39, 2013, https://doi.org/10.1021/ie302769p
  4. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction vol.118, pp.19, 2014, https://doi.org/10.1021/jp503413s
  5. Fenton-Like Oxidation of 4-Chlorophenol: Homogeneous or Heterogeneous? vol.54, pp.33, 2015, https://doi.org/10.1021/acs.iecr.5b02378
  6. A Rapid and Miniaturized Method for the Selection of Microbial Phenol Degraders Using Colourimetric Microtitration vol.70, pp.6, 2015, https://doi.org/10.1007/s00284-015-0809-7
  7. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes vol.9, pp.5, 2015, https://doi.org/10.1007/s11783-015-0814-x
  8. Peroxidase-Like Activity of Ferrihydrite and Hematite Nanoparticles for the Degradation of Methylene Blue vol.2016, pp.1687-4129, 2016, https://doi.org/10.1155/2016/3427809
  9. Decontamination of Pure and Ethanol/Gasoline-Contaminated Soil by Fenton-Like Process vol.229, pp.4, 2018, https://doi.org/10.1007/s11270-018-3736-y
  10. Niobian iron oxides as heterogeneous Fenton catalysts for environmental remediation vol.195, pp.1-3, 2010, https://doi.org/10.1007/s10751-009-0097-3
  11. Electrochemical Degradation of Benzoquinone in a Flow through Cell with Carbon Fibers vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.403
  12. Nb-containing hematites Fe2-xNbxO3: The role of Nb5+ on the reactivity in presence of the H2O2 or ultraviolet light vol.357, pp.1, 2006, https://doi.org/10.1016/j.apcata.2009.01.014
  13. Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight vol.44, pp.9, 2010, https://doi.org/10.1021/es903739f
  14. The decolorization of Acid Orange II in non-homogeneous Fenton reaction catalyzed by natural vanadium–titanium magnetite vol.181, pp.1, 2010, https://doi.org/10.1016/j.jhazmat.2010.04.101
  15. Application of S2O82-/FexOy Solid Super Acid as a Heterogeneous Fenton-Like Catalyst for the Degradation of Orange IV in Water vol.150, pp.None, 2006, https://doi.org/10.4028/www.scientific.net/amr.150-151.1710
  16. Nanostructured δ-FeOOH: An efficient Fenton-like catalyst for the oxidation of organics in water vol.119, pp.None, 2006, https://doi.org/10.1016/j.apcatb.2012.02.026
  17. Colloidal cubes for the enhanced degradation of organic dyes vol.2, pp.26, 2006, https://doi.org/10.1039/c4ta01373e
  18. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides vol.22, pp.1, 2006, https://doi.org/10.1016/j.jfda.2014.01.007
  19. Electrochemical Processes with a Chambered Dual‐Anode Design for Enhanced Removal of Dichlorophenol in Aqueous Solutions vol.4, pp.17, 2006, https://doi.org/10.1002/slct.201803863
  20. Heterogeneous photo-Fenton oxidation of lignin of rice husk alkaline hydrolysates using Fe-impregnated silica catalysts vol.42, pp.14, 2021, https://doi.org/10.1080/09593330.2019.1697376