DOI QR코드

DOI QR Code

Synthesis, Thermal Decomposition Pattern and Single Crystal X-Ray Studiesof Dimeric [Cu(dmae)(OCOCH3)(H2O)]2: A Precursor for the Aerosol Assisted Chemical Vapour Deposition of Copper Metal Thin Films

  • Mazhar, Muhammad (Department of Chemistry, Quaid-i-Azam University) ;
  • Hussain, S.M. (Department of Chemistry, Quaid-i-Azam University) ;
  • Rabbani, Faiz (Department of Chemistry, Quaid-i-Azam University) ;
  • Kociok-Kohn, Gabriele (Department of Chemistry, University of Bath) ;
  • Molloy, Kieran C. (Department of Chemistry, University of Bath)
  • Published : 2006.10.20

Abstract

A dimeric precursor, $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ for the CVD of copper metal films, (dmaeH = N,N-dimethylaminoethanol) was synthesized by the reaction of copper(II) acetate monohydrate ($Cu(OCOCH_3)_2{\cdot}H_2O$) and dmaeH in toluene. The product was characterized by m.p. determination, elemental analysis and X-ray crystallography. Molecular structure of $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ shows that a dimeric unit $[Cu(dmae)(OCOCH_3)(H_2O)]_2$ is linked to another through hydrogen bond and it undergoes facile decomposition at 300 C to deposit granular copper metal film under nitrogen atmosphere. The decomposition temperature, thermal behaviour, kinetic parameters, evolved gas pattern of the complex, morphology, and the composition of the film were also investigated.

Keywords

References

  1. Hampden-Smith, M. J.; Kodas, T. T. Chem. Vap. Deposition 1995, 1, 8 https://doi.org/10.1002/cvde.19950010103
  2. Hampden-Smith, M. J.; Kodas, T. T. Chem. Vap. Deposition 1995, 1, 39 https://doi.org/10.1002/cvde.19950010202
  3. Maury, F. J. Phys. IV France 1995, 5, C5-449 https://doi.org/10.1051/jp2:1995109
  4. Dossi, C.; Pasaro, R.; Bartsch, A.; Brivio, E.; Galasco, A.; Losi, P. Catal. Today 1993, 17, 527 https://doi.org/10.1016/0920-5861(93)80055-6
  5. Dossi, C.; Pasaro, R.; Bartsch, A.; Fusi, A.; Sordelli, L.; Ugo, R.; Ballatreccia, M.; Zanon, R.; Vlaic, G. J. Catal. 1994, 145, 370
  6. Dossi, C.; Pasaro, R.; Sordelli, L.; Ballatreccia, M.; Sordelli, L.; Ballatreccia, M.; Zanon, R. J. Catal. 1996, 159, 435 https://doi.org/10.1006/jcat.1996.0107
  7. Dossi, C.; Pasaro, R.; Fusi, A.; Recchia, S.; Sanot, V. dal.; Sordelli, L. Thermochim. Acta 1998, 317, 157 https://doi.org/10.1016/S0040-6031(98)00378-5
  8. Electroceramic Thin Films, Part I & II; Auciells, O.; Ramesh, R., Eds.; MRS Bull. 1996, 21(7)
  9. Kodas, T. T.; Hampden-Smith, M. J. The Chemistry of Metal CVD; VCH: Weinheim, 1994
  10. Rickerby, J.; Steinke, J. H. G. Chem. Revs. 2002, 102, 1525 https://doi.org/10.1021/cr0104476
  11. Young, V. L.; Cox, D. F.; Davis, M. E. Chem. Mater. 1993, 5, 1701 https://doi.org/10.1021/cm00036a006
  12. Hsu, P. F.; Chi, Y.; Lin, T. W.; Liu, C. S.; Carty, A. J.; Peng, S. M. Chem. Vap. Deposition 2001, 7, 28 https://doi.org/10.1002/1521-3862(200101)7:1<28::AID-CVDE28>3.0.CO;2-6
  13. Becker, R.; Devi, A.; Weiss, J.; Weckenmann, U.; Winter, M.; Kiener, C.; Becker, H. W.; Fischer, R. A. Chem. Vap. Deposition 2003, 9, 149 https://doi.org/10.1002/cvde.200306236
  14. Goel, S. C.; Kramer, K. S.; Chiang, M. Y.; Buhro, W. E. Polyhedron 1990, 9, 611 https://doi.org/10.1016/S0277-5387(00)86241-5
  15. Young, V. L.; Cox, D. F.; Davis, M. E. Chem. Mater. 1993, 5, 1701 https://doi.org/10.1021/cm00036a006
  16. Bradlet, D. C.; Mehrotra, R. C.; Gaur, D. P. Metal Alkoxides; Academic Press Inc. (London) Ltd.: 1978; p 87
  17. Young, V. L.; Cox, D. F.; Davis, M. E. Chem. Mater. 1993, 5(12), 1701 https://doi.org/10.1021/cm00036a006
  18. Szymanski, H. A. A Systematic Approach to the Interpretation of Infrared Spectra; Hertillion: Buffalo, NY, 1967
  19. Socrates, G. Infrared Characteristic Group Frequencies; John Wiley and Sons: Chichester, 1980
  20. Mukhopadhyay, S.; Shalini, K.; Devi, A.; Shivashankar, S. A. Bull. Mater. Sci. 2002, 25(5), 391 https://doi.org/10.1007/BF02708016

Cited by

  1. Evolved Gas Analysis by Infrared Spectroscopy vol.45, pp.4, 2010, https://doi.org/10.1080/05704928.2010.483664
  2. Heptanuclear zinc cluster for growth of zincite and manganese-doped zincite thin films for sensor applications vol.144, pp.3, 2013, https://doi.org/10.1007/s00706-012-0824-3
  3. ) oxide thin films deposited via aerosol-assisted CVD vol.2, pp.19, 2014, https://doi.org/10.1039/C4TB00196F
  4. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol vol.44, pp.11, 2015, https://doi.org/10.1007/s11664-015-3996-x
  5. ′] vol.64, pp.9, 2008, https://doi.org/10.1107/S1600536808024148
  6. Aerosol assisted chemical vapour deposition of Cu–ZnO composite from single source precursors pp.28, 2009, https://doi.org/10.1039/b903406d
  7. Population differentiation of the shore crab Carcinus maenas (Brachyura: Portunidae) on the southwest English coast based on genetic and morphometric analyses vol.74, pp.3, 2010, https://doi.org/10.3989/scimar.2010.74n3435
  8. Optical and gas sensing studies of transparent ZnO thin film deposited from a new precursor by ultrasonic aerosol assisted chemical vapor deposition vol.1, pp.2, 2006, https://doi.org/10.5155/eurjchem.1.2.96-101.49
  9. Semiconducting composite oxide Y2CuO4–5CuO thin films for investigation of photoelectrochemical properties vol.43, pp.22, 2006, https://doi.org/10.1039/c4dt00719k
  10. New Insight into the Interplay of Method of Deposition, Chemical State of Pd, Oxygen Storage Capability and Catalytic Activity of Pd-Containing Perovskite Catalysts for Combustion of Methane vol.11, pp.11, 2006, https://doi.org/10.3390/catal11111399