DOI QR코드

DOI QR Code

Crystal Structures of the Two Isomorphous A-DNA Decamers d(GTACGCGTAC) and d(GGCCGCGGCC)

  • Kim, Tae-gyun (Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology) ;
  • Kwon, Taek-Hun (Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology) ;
  • Jung, Hye-sun (Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology) ;
  • Ku, Ja-Kang (Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology) ;
  • Sundaralingam, Muttaiya (Department of Chemistry, The Ohio State University) ;
  • Ban, Chang-ill (Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology)
  • Published : 2006.04.20

Abstract

To study the effect of sequence on DNA structure, the two decamer crystal structures one alternating,d(GTACGCGTAC), and the other non-alternating, d(GGCCGCGGCC), were solved. Crystals of both decamers belong to the hexagonal space group $P6_122$, with one strand in the asymmetric unit. The unit cell constants of the alternating decamer are a = b = 39.26 $\AA$, c = 77.70 $\AA$. The structure was refined with 1,828 reflections from 8.0 to 2.0 Aresolution to an R value of 21.3% with all DNA atoms and 63 water molecules. The isomorphous non-alternating decamer had unit cell dimensions of a = b = 39.05 $\AA$, c = 82.15 $\AA$. The structure was refined with 2,423 reflections from 8.0 to 2.0 $\AA$ resolution to a final R value of 22.2% for all DNA atoms and 65 water molecules. Although the average helical parameters of the decamers are typical of A-DNAs, there are some minor differences between them. The helical twist, rise, x-displacement, inclination and roll alternate in the alternating decamer, but do not in the non-alternating decamer. The backbone conformations in both structures show some differences; the residue G(7) of the alternating decamer is trans for $\alpha$ and $\gamma$ while the trans conformations are observed at the residue G(8) of the non-alternating decamer.

Keywords

References

  1. Ramakrishnan, B.; Sundaralingam M. Biochemistry 1993, 32, 11458 https://doi.org/10.1021/bi00093a025
  2. Lipanov, A.; Kopka, M. L.; Kaczor-Grzeskowiak, M.; Quintana, J.; Dickerson, R. E. Biochemistry 1993, 32, 1373 https://doi.org/10.1021/bi00056a024
  3. Jain, S.; Zon, G.; Sundaralingam, M. Biochemistry 1991, 30, 3567 https://doi.org/10.1021/bi00228a030
  4. Shakked, Z.; Guerstein-Guzikevich, G.; Frolow, F.; Rabinovich, D. Nature 1988, 342, 456
  5. Mooers, B. H. M.; Schroth, G. P.; Baxter, W. W.; Ho, P. S. J. Mol. Biol. 1995, 249, 772 https://doi.org/10.1006/jmbi.1995.0336
  6. Dickerson, R. E.; Googsell, D. S.; Neidle, S. Proc. Natl. Acad. Sci. USA. 1994, 91, 3579 https://doi.org/10.1073/pnas.91.9.3549
  7. Bingman, C.; Jain, S.; Zon, G.; Sundaralingam, M. Nucleic Acids Res. 1992, 20, 6637 https://doi.org/10.1093/nar/20.24.6637
  8. Ban, C.; Sundaralingam, M. Biophysical J. 1996, 71, 1222 https://doi.org/10.1016/S0006-3495(96)79351-7
  9. Frederick, C. A.; Quigley, G. J.; Teng, M.-K.; Coll, M.; van der Marel, G. A.; van Boom, J. H.; Rich, A.; Wang, A. H.-J. Eur. J. Biochem. 1989, 181, 295 https://doi.org/10.1111/j.1432-1033.1989.tb14724.x
  10. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J.-S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. Acta Cryst. 1998, D54, 905
  11. Berman, M. H.; Olson, W. K.; Beveridge, D.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S.; Srinvasan, A. R.; Schneider, B. Biophysical J. 1992, 63, 751 https://doi.org/10.1016/S0006-3495(92)81649-1

Cited by

  1. Synthesis and crystal structure study of 2′-Se-adenosine-derivatized DNA vol.53, pp.1, 2010, https://doi.org/10.1007/s11426-010-0012-4