DOI QR코드

DOI QR Code

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul (ACEN Co., LTD #108A TB1 Center, Hankuk University of Foreign Studies) ;
  • Hong, Hun-Gi (Department of Chemistry Education, Seoul National University)
  • Published : 2006.03.20

Abstract

The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.

Keywords

References

  1. McLendon, G. Acc. Chem. Res. 1988, 21, 160 https://doi.org/10.1021/ar00148a005
  2. Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly; Academic Press: San Diego, CA, 1991
  3. Murray, R. W. Molecular Design of Electrode Surface; Techniques of Chemistry Series; John Wiley & Sons, Inc.: New York, 1992; Vol. XXII
  4. Finklea, H. O. In Electroanalytical Chemistry; Bard, A. J., Rubinstein, I., Eds.; Marcel Dekker: New York, 1996; Vol 19, p109
  5. Foster, R. J.; Faulkner, L. R. J. Am. Chem. Soc. 1994, 116, 5453 https://doi.org/10.1021/ja00091a058
  6. Tender, L.; Carter, M. T.; Murray, R. W. Anal. Chem. 1994, 66, 3173 https://doi.org/10.1021/ac00091a028
  7. Rowe, G. K.; Carter, M. T.; Richardson, J. N.; Murray, R. W. Langmuir 1995, 11, 1797 https://doi.org/10.1021/la00005a059
  8. Smalley, J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y.-P. J. Phys. Chem. 1995, 99, 13141 https://doi.org/10.1021/j100035a016
  9. Weber, K. S.; Creager, S. E. J. Electroanal. Chem. 1998, 458, 17 https://doi.org/10.1016/S0022-0728(98)00303-9
  10. Curtin, L. S.; Peck, S. R.; Tender, L. M.; Murray, R. W.; Rowe, G. K.; Creager, S. E. Anal. Chem. 1993, 65, 386 https://doi.org/10.1021/ac00052a013
  11. Marcus, R. A. J. Chem. Phys. 1965, 43, 679 https://doi.org/10.1063/1.1696792
  12. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265 https://doi.org/10.1016/0304-4173(85)90014-X
  13. Hong, H.-G.; Park, W.; Yu, E. Bull. Korean Chem. Soc. 2000, 21, 23
  14. Hong, H.-G.; Park, W. Langmuir 2001, 17, 2483
  15. Hong, H.-G.; Park, W. Bull. Korean Chem. Soc. 2005, 26, 1885 https://doi.org/10.5012/bkcs.2005.26.11.1885
  16. Gobi, K. V.; Okajima, T.; Tokuda, K.; Ohsaka, T. Langmuir 1998, 14, 1108 https://doi.org/10.1021/la970694y
  17. Laviron, E. J. Electroanal. Chem. 1979, 101, 19 https://doi.org/10.1016/S0022-0728(79)80075-3
  18. Bard, A. J.; Faulkner, L. R. Electrochemical Methods; Wiley: New York, 1980
  19. Curtiss, L. A.; Halley, J. W.; Hautman, J.; Hung, N. C.; Nagy, Z.; Rhee, Y. J.; Yonco, R. M. J. Electrochem. Soc. 1991, 138, 2032 https://doi.org/10.1149/1.2085919
  20. Chidsey, C. E. D. Science 1991, 51, 919
  21. Sutin, N. Acc. Chem. Res. 1982, 15, 275 https://doi.org/10.1021/ar00081a002
  22. Finklea, H. O.; Hanshew, D. D. J. Am. Chem. Soc. 1992, 114, 3173 https://doi.org/10.1021/ja00035a001
  23. Marcus, R. A. J. Phys. Chem. 1963, 67, 853 https://doi.org/10.1021/j100798a033
  24. Marcus, R. A. J. Chem. Phys. 1965, 43, 679 https://doi.org/10.1063/1.1696792
  25. Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 1990

Cited by

  1. An Electrochemical Scanning Tunneling Microscopy Study of 2-(6-Mercaptoalkyl)hydroquinone Molecules on Au(111) vol.132, pp.21, 2010, https://doi.org/10.1021/ja101666q
  2. Step-wise proton-coupled electron transfer extended to aminobenzoquinone modified monolayers vol.13, pp.6, 2011, https://doi.org/10.1039/C0CP01251C
  3. Proton-Coupled Electron Transfer vol.112, pp.7, 2012, https://doi.org/10.1021/cr200177j
  4. Multicopper Models for the Laccase Active Site: Effect of Nuclearity on Electrocatalytic Oxygen Reduction vol.53, pp.16, 2014, https://doi.org/10.1021/ic501080c
  5. Effect of Axial Ligand, Spin State, and Hydrogen Bonding on the Inner-Sphere Reorganization Energies of Functional Models of Cytochrome P450 vol.53, pp.19, 2014, https://doi.org/10.1021/ic501112a
  6. Nanodomains of Juglonethiol on Au(111): Relationship between Domain Size and Electrochemical Properties vol.119, pp.52, 2015, https://doi.org/10.1021/acs.jpcc.5b10324
  7. Quantum–Classical Path Integral Simulation of Ferrocene–Ferrocenium Charge Transfer in Liquid Hexane vol.6, pp.24, 2015, https://doi.org/10.1021/acs.jpclett.5b02265
  8. Studies on electrodeposition behavior of Sn–Bi alloys in plating baths modified by hydroquinone and gelatin vol.51, pp.12, 2016, https://doi.org/10.1007/s10853-016-9883-x
  9. Protein Oligomerization Based on Brønsted Acid Reaction vol.7, pp.4, 2017, https://doi.org/10.1021/acscatal.7b00272
  10. Enzyme Biofuel Cells: Thermodynamics, Kinetics and Challenges in Applicability vol.1, pp.11, 2014, https://doi.org/10.1002/celc.201402141
  11. Observation of two discrete conductivity states in quinone-oligo(phenylene vinylene) vol.21, pp.8, 2010, https://doi.org/10.1088/0957-4484/21/8/085704
  12. Electrocatalytic Behavior of Self-assembled Monolayer of a Novel Tetraazamacrocyclic Copper(II) Complex in Ascorbate Oxidation vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.817
  13. Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer vol.108, pp.7, 2006, https://doi.org/10.1021/cr068065t
  14. Heterogeneous Proton-Coupled Electron Transfer of an Aminoanthraquinone Self-Assembled Monolayer vol.113, pp.12, 2006, https://doi.org/10.1021/jp807287p
  15. Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media vol.1, pp.19, 2006, https://doi.org/10.1039/c3ta10727b
  16. Direct Measurement of Water Permeation in Submerged Alkyl Thiol Self-Assembled Monolayers on Gold Surfaces Revealed by Neutron Reflectometry vol.35, pp.16, 2006, https://doi.org/10.1021/acs.langmuir.9b00541
  17. Contributions to cytochrome c inner- and outer-sphere reorganization energy vol.12, pp.35, 2006, https://doi.org/10.1039/d1sc02865k