DOI QR코드

DOI QR Code

Effects of Silk Protein Hydrolysates on Blood Glucose in C57BL/KsJ db/db Mice

실크단백질 효소 가수분해물이 2형 당뇨 마우스 C57BL/KsJ db/db의 혈당에 미치는 영향

  • Shin, Mi-Jin (Dept. of Food Science and Nutrition, Dankook University) ;
  • Park, Min-Jeong (Dept. of Food Science and Nutrition, Dankook University) ;
  • Youn, Myung-Sub (Dept. of Food Science and Nutrition, Dankook University) ;
  • Lee, Young-Sook (Dept. of Food Science and Nutrition, Dankook University) ;
  • Nam, Moon-Suk (Dept. of Internal Medicine, Inha University, College of Medicine) ;
  • Park, In-Sun (Dept. of Anatomy, Inha University, College of Medicine) ;
  • Jeong, Yoon-Hwa (Dept. of Food Science and Nutrition, Dankook University)
  • 신미진 (단국대학교 식품영양학과) ;
  • 박민정 (단국대학교 식품영양학과) ;
  • 윤명섭 (단국대학교 식품영양학과) ;
  • 이영숙 (단국대학교 식품영양학과) ;
  • 남문석 (인하대학교 의과대학 내과학교실) ;
  • 박인선 (인하대학교 의과대학 해부학교실) ;
  • 정윤화 (단국대학교 식품영양학과)
  • Published : 2006.09.01

Abstract

This study was performed to investigate the effect of silk protein hydrolysates on blood glucose in diabetic mice (C57BL/KsJ db/db). The silk protein hydrolysates hydrolyzed by protease contains 87.52% of peptides of which molecular weight was below 2,000 dalton. The content of free amino acids was 14.80 g/100 g silk protein hydrolysates and major free amino acids were Pro, Thr, Arg and Ala. Silk protein hydrolysates were administered to the animals for 9 weeks at doses of 0.2, 0.5% and 0.8% solution. The body weight increase in the 0.5 and 0.8% fed groups were higher than control group. Food and water intake in the silk protein hydrolysates fed groups were lower than control group. The weight of liver was not different among groups, while the weight of kidney in control group was higher than silk protein hydrolysates fed groups. The blood glucose level in silk protein hydrolysates fed groups was lower than control group. In the glucose tolerance test, the blood glucose level in control group was the highest at 15 minutes after glucose injection while those in silk protein hydrolysates fed groups were the highest at 30 minutes. Results in this study suggest that silk protein hydrolysates show hypoglycemic effect in C57BL/KsJ db/db mice.

본 연구에서는 실크단백질 효소 가수분해물을 제 2형 당뇨병 모델인 C57BL/KsJ db/db mouse에 9주 동안 섭취시켜 혈당 변화를 관찰하였다. 실크단백질 효소 가수분해물의 펩타이드의 평균 분자량은 1357.11 Da이었으며, 2,000 Da 미만의 펩타이드가 87.52%이었다. 총 유리아미노산은 실크단백질 효소 가수분해물 100 g 당 14.80 g이었으며, proline, threonine, arginine, alanine 순으로 많았다. 실크단백질 효소 가수분해물 섭취군은 대조군에 비하여 체중감소가 유의적으로 낮았으며, 실크단백질 효소 가수분해물 농도에 비례하여 체중감소가 낮은 경향을 보였다. 식이 섭취량은 당뇨 대조군이 가장 높게 나타났으며, 실크단백질 효소 가수분해물 0.5% 섭취군의 섭취량이 가장 낮게 나타나 유의적인 차이를 보였다. 음수 섭취량은 식이 섭취량과 유사한 경향을 나타내었으며, 실크단백질 효소 가수분해물 섭취군은 당뇨대조군에 비해 전반적으로 낮은 섭취량을 보였다. 간장과 신장 무게(g/100 g body weight)는 당뇨 대조군과 실크단백질 효소 가수분해물 간에 유의적인 차이가 없었다. 신장의 무게는 실크단백질 효소 가수분해물 농도에 비례하여 감소하였으나 유의적인 차이는 없었다. 혈당은 실크 단백질 효소 가수분해물 섭취군이 대조군에 비하여 유의적으로 낮게 나타났으며, 내당능은 당뇨 대조군이 측정 기간 동안 높은 혈당을 유지하였으나, 반면에, 실크단백질 효소 가수분해물 섭취군의 경우 포도당 부하 후 60분 후부터 혈당의 감소가 나타나 180분 후 초기 혈당 수준으로 회복되었다. 실크단백질 가수분해물의 섭취는 혈당상승을 억제하는 효과가 있는 것으로 사료되며 혈당상승에 대한 억제 기전과 당뇨의 개선효과를 뒷받침 할 수 있는 향후 연구가 필요하다고 사료된다.

Keywords

References

  1. Coulston AM, Hollenbeck CB. 1988. Source and amount of dietary carbohydrate in patients with non insulin-dependent diabetes mellitus. Top Clin Nutr 3: 17-24
  2. Zeman FJ. 1991. Clinical nutrition and diabetics. 2nd ed. Macmillan Publishing Company, New York. p 398-403
  3. DeFronzo RA. 1988. Lilly Lecture: the triumvirate: $\beta$-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes 37: 667-687 https://doi.org/10.2337/diab.37.6.667
  4. DeFronzo RA, Ferrannini E. 1987. Regulation of hepatic glucose metabolism in humans. Diabetes Metab Rev 3: 415-459 https://doi.org/10.1002/dmr.5610030204
  5. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. 1981. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry. Diabetes 30: 1000-1007 https://doi.org/10.2337/diab.30.12.1000
  6. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. 1985. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin dependent diabetes mellitus. J Clin Invest 76: 149-155 https://doi.org/10.1172/JCI111938
  7. DeFronzo RA. 1992. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetalogia 35: 389-397 https://doi.org/10.1007/BF00401208
  8. Bailey CJ. 1999. Insulin resistance and antidiabetic drugs. Biochem Pharmacol 58: 1511-1520 https://doi.org/10.1016/S0006-2952(99)00191-4
  9. Zhang BB, Moller DE. 2000. New approaches in the treatment of type 2 diabetes. Curr Opin Chem Biol 4: 461-467 https://doi.org/10.1016/S1367-5931(00)00103-4
  10. Shokuhin to kaihatsu Henshubu. 2000. Market trend of health foods and health ingredients. Shokuhin to Kaihatsu 35: 18-34
  11. Lee KG, Yeo JH, Lee YW, Kweon HY, Woo SO, Han SM, Kim JH. 2003. Studies on industrial utilization of silk protein. Kor J Food Sci Ind 36: 25-37
  12. Lee SH, Cho HN, Hyun CK, Jew SS. 2002. Physiology functional characteristic of silk peptide. Food Sci Ind 35: 57-62
  13. Luo J, Chen K, Xu Q, Hirabayashi K. 1993. Study on foodization of fibroin and its functionality. The collection of paper for the second international silk conference, Beijing, China. p 73-87
  14. Akai H. 1999. New physiological functions of silk material. Shokuhin to Kaihatsu 34: 43-47
  15. Gotoh K, Izumi H, Kanamoto T, Tamada Y, Nakashima H. 2000. Sulfate fibroin, a novel sulfated peptide derived from silk, inhibits human immunodeficiency virus replication in vitro. Biosci Biotechnol Biochem 64: 1664-1670 https://doi.org/10.1271/bbb.64.1664
  16. Nahm JH, Oh YS. 1995. A study of pharmacological effect of silk fibroin. RDA J Agric Sci 37: 145-157
  17. Stanley M, Lee SB. 1986. Chronic effects of an $\alpha$-glucosidase inhibitor (Bay O 1248) on intestinal disaccharidase activity in normal and diabetic mice. J Pharm Exp Therapeutics 240: 123-137
  18. Grey NJ, Karls I, Kipinis DM. 1975. Physiological mechanism in the development of starvation ketosis in man. Diabetes 24: 10-14 https://doi.org/10.2337/diabetes.24.1.10
  19. Gallaher DD, Casallany AS, Shoeman DW, Olson JM. 1993. Diabetes increases excretion of urinary malonaldehyde conjugates in rat. Lipid 28: 663-666 https://doi.org/10.1007/BF02536063
  20. Hong H, Maeng WJ. 2004. Effect of malted barley extract and banana extract on blood glucose levels in genetically diabetic mice. J Med Food 7: 487-490 https://doi.org/10.1089/jmf.2004.7.487
  21. Jung UJ, Lee MK, Jeong KS, Choi MS. 2004. The hypoglycemic effect of hesperidin and naringin are partely mediated by glucose-regulating enzymes in C57BL/KsJ db/db mice. J Nutr 134: 2499-2503
  22. Uchiyama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. 2002. Astaxanthin protects beta-cells against glucose toxicity diabetic db/db mice. Redox Rep 7: 290-293 https://doi.org/10.1179/135100002125000811
  23. Park KJ, Hong SE, Do MS, Hyun CK. 2002. Stimulation of insulin secretion by silk fibroin hydrolysate in streptozotocin-induced diabetic rat and db/db mice. Kor J Pharmacogn 33: 21-28
  24. Kim MJ, Ahn JH, Choi KH, Lee YH, Woo GJ, Hong EK, Chung YS. 2006. Effect of pine needle extract oil on blood glucose and serum insulin levels in db/db mice. J Korean Soc Food Sci Nutr 35: 321-327 https://doi.org/10.3746/jkfn.2006.35.3.321
  25. Ishihara K, Fukuchi Y, Mizunoya W, Mita Y, Fukuya Y, Fuhiki T, Yasumoto K. 2003. Amino acid composition of soybean protein increased postprandial carbohydrate oxidation in diabetic mice. Biosci Biotechnol Biochem 67: 2505-2511 https://doi.org/10.1271/bbb.67.2505

Cited by

  1. Silk Amino Acids Improve Physical Stamina and Male Reproductive Function of Mice vol.33, pp.2, 2010, https://doi.org/10.1248/bpb.33.273
  2. 실크단백질 효소 가수분해물이 2형 당뇨 마우스의 혈당 및 혈청지질에 미치는 영향 vol.35, pp.10, 2006, https://doi.org/10.3746/jkfn.2006.35.10.1343
  3. 실크단백질 효소 가수분해물이 OLETF Rat의 혈당, 혈중 인슐린과 렙틴분비에 미치는 영향 vol.36, pp.6, 2007, https://doi.org/10.3746/jkfn.2007.36.6.703
  4. 삼색싸리 메탄올 추출물의 3T3-L1지방세포와 db/db 마우스에서의 PPARγ 작용제와 인슐린 유사효과를 통한 혈당조절 개선효과 vol.62, pp.4, 2019, https://doi.org/10.3839/jabc.2019.057