DOI QR코드

DOI QR Code

비정렬 격자계에서 연속 Adjoint 방법을 이용한 헬리콥터 로터 블레이드의 제자리 비행 공력 형상 최적설계

Aerodynamic Shape Optimization of Helicopter Rotor Blades in Hover Using a Continuous Adjoint Method on Unstructured Meshes

  • 이상욱 (한국과학기술원 항공우주공학과 대학원) ;
  • 권오준 (한국과학기술원 항공우주공학과)
  • 발행 : 2005.01.01

초록

비정렬 격자계에서 continuous adjoint 방정식을 사용하여 제자리 비행을 하는 헬리콥터 로터 블레이드에 대한 공력 형상 최적설계 기법을 개발하였다. 효율적인 민감도 계산을 위해 회전좌표계에서 continuous adjoint 민감도 해석 기법을 유도하였다. 설계과정의 반복적인 수치계산의 효율을 높이기 위해서 영역 분할 기법에 기반을 둔 병렬처리 기법을 도입하였다. 끝단 와류의 정확한 포착을 위해서 끝단와류를 따른 격자적응을 수행하였다. 이러한 방법은 Caradonna와 Tung의 실험형상 및 UH60 헬리콥터 로터 블레이드의 공력 최적설계에 적용되었으며, 본 연구에서 사용된 최적설계 기법을 이용하면 일정한 추력을 유지하면서 요구동력을 현저하게 줄일 수 있음을 보였다.

An aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference for hovering rotor blades. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized using a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the tip vortex. Applications were made for the aerodynamic shape optimization of Caradonna-Tung rotor blades and UH60 rotor blades in hover. The results showed that the present method is an effective tool to determine optimum aerodynamic shapes of rotor blades requiring less torque while maintaining the desired thrust level.

키워드

참고문헌

  1. Nadarajah, S. K., 'The Discrete Adjoint Approach to Aerodynamic Shape Optimization', Ph. D. Thesis, Stanford Univ., 2003
  2. Oyama, A., Liou, M. S., and Obayashi, S., 'Transonic Axial-Flow Blade Shape Optimization Using Evolutionary Algorithm and Three-Dimensional Navier-Stokes Solver', AIAA 2002-5642, 2002
  3. 이상욱, 권오준, '비정렬 격자계에서 continuous adjoint 방정식을 이용한 공력 형상 최적설계', 한국항공우주학회지, Vol. 30, No. 4, 2002, pp. 18-27
  4. Lee, S. W., and Kwon, O. J., 'Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes', KSAS International Journal, Vol. 4, No. 1, 2003, pp. 45-52
  5. Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and Saunders, D., 'Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 1, 2', Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 61-74 https://doi.org/10.2514/2.2414
  6. Tapia, F., Sankar, L. N., and Schage, D. P., 'An Inverse Aerodynamic Design Method for Rotor Blades', Journal of the American Helicopter Society, Vol. 42, No. 4, 1997, pp. 321-316 https://doi.org/10.4050/JAHS.42.321
  7. Fanjoy, D. W., and Crossly, W. A., 'Aerodynamic Shape Design for Rotor Airfoils via Genetic Algorithm', American Helicopter Society 53rd Annual Forum, 1997
  8. Sun, H., Kim, Y., Lee, S., and Lee, D., 'Aerodynamic Design of Helicopter Rotor Blade in Forward Flight Using Response Surface Methodology', American Helicopter Society 58th Annual Forum, 2002
  9. Kang, H. J., and Kwon, O. J., 'Effect of Wake Adaptation on Rotor Hover Simulations Using Unstructured Meshes', Journal of Aircraft, Vol. 38, No. 5, 2001, pp. 868-877 https://doi.org/10.2514/2.2846
  10. Caradonna, F. X., and Tung, C., 'Experimental and Analytical Studies of a Model Helicopter Rotor in Hover', NASA TM 81232, 1981
  11. Ahmad, J. U., and Strawn, R. C., 'Hovering Rotor and Wake Calculations with an Overset-Grid Navier-Stokes Solver', $55^{th}$ AHS Annual Forum, 1999
  12. Yeo, H. S., and Johnson, W., 'Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors', AHS 4th Decennial Specialists's Conference on Aeromechanics,' 2004
  13. Srinivasan, G. R., Raghavan, V., and Duque, E. P. N., 'Flowfield Analysis of Modern Helicopter Rotors in Hover by Navier-Stokes Method', Journal of the American Helicopter Society, Vol. 38, No. 3, 1993, pp. 3-13 https://doi.org/10.4050/JAHS.38.3