DOI QR코드

DOI QR Code

Estimation of Rumen By-pass Rate of Chromium-methionine Chelates by Ruminal Bacteria Analysis

반추미생물 분석에 의한 Chromium-methionine Chelate의 반추위 By-pass율 추정

  • Kim, C.H. (Institute of Animal Resources, Kangwon National University) ;
  • Park, B.K. (Institute of Animal Resources, Kangwon National University) ;
  • Park, J.G. (Institute of Animal Resources, Kangwon National University) ;
  • Kim, H.S. (Institute of Animal Resources, Kangwon National University) ;
  • Sung, K.I. (Institute of Animal Resources, Kangwon National University) ;
  • Shin, J.S. (Institute of Animal Resources, Kangwon National University) ;
  • Ohh, S.J. (Institute of Animal Resources, Kangwon National University)
  • 김창혁 (강원대학교 동물자원공동연구소) ;
  • 박병기 (강원대학교 동물자원공동연구소) ;
  • 박정금 (강원대학교 동물자원공동연구소) ;
  • 김현숙 (강원대학교 동물자원공동연구소) ;
  • 성경일 (강원대학교 동물자원공동연구소) ;
  • 신종서 (강원대학교 동물자원공동연구소) ;
  • 오상집 (강원대학교 동물자원공동연구소)
  • Published : 2005.10.31

Abstract

The study was designed to estimate the in vitro rumen by-pass rate of both chromium methionine chelate as an organic supplement and $ClCl_3$ as an inorganic supplement. Rumen by-pass rates of the supplements were evaluted by comparing ruminal metabolites in rumen fluid and Cr and methionine contents in the body of ruminal microorganism. For in vitro digestion examination, basic nutrients for ruminal microbes were supplied with 7g(DM) of feed, 2g of rice straw, and 2g of corn silage per each incubation jar. Three treatments including Control(no supplementation of Cr), T1(1000ppb supplementation of $ClCl_3$) and T2(chromium methionine chelate supplementation equivalent to 1000ppb of Cr content) were prepared with five replications per each treatment. pH of T2 was lower than that of Control and T1 regardless of incubation time. Ammonia content was higher in T2 than in Control and T1 during first 6 hours of incubation. However, the ammonia content in Control was remained low after 6 hours. Total volatile fatty acids(VFA) content in control was increased constantly as incubation time was extended. Therefore, VFA content in T1 and T2 were significantly lower (P<0.05) than those of Control. Dry matter recovery rate by ruminal microorganism was the lowest in T1, however ruminal microbial population was increased most efficiently in T2 during 12 hours of in vitro incubation. Cr concentrations in the body of ruminal microbes were not different(P>0.05) between Control and T2, but it was significantly high in T1(P<0.05). Contents of methionine and cystine in ruminal microbes also were not different between Control and T2(P>0.05), but it was relatively low in T1. Based on the above results, the chromium methionine chelate was believed to by-pass rumen and could remain intact until it reaches small intestine compared to inorganic chromium. This results implies that chromium methionine chelate could be more effective to function in the small intestine of ruminant animals.

본 연구는 무기태 크롬($ClCl_3$)와 유기태화 크롬인 Cr-methionine chelate(크라민®)을 첨가하였을 때 in vitro 조건에서 반추위내 발효성상과 반추미생물체 내 Cr과 Methionine을 분석하여 크라민®의 by-pass 여부를 간접적으로 증명하고자 실시하였다. In vitro 소화시험에 이용한 기초영양소는 Jar 당 반추미생물 기초 영양소로 시중에 유통되고 있는 배합사료 7g(DM), 볏짚 2g(DM) 및 Corn silage 2g(DM)을 동일하게 배합하였으며, 시험구로는 대조구(control), $ClCl_3$를 1000ppb 첨가한 T1구 및 Cr 농도가 1000ppb이 되도록 크라민®을 첨가한 T2구를 두었으며, 처리 당 5반복으로 시험을 수행하였다. T2의 pH는 모든 배양시간에서 대조구 및 T1구에 비하여 낮은 경향을 보였으며, 암모니아 농도는 배양 6시간 전까지는 대조구와 T1구에 비하여 T2구가 높은 경향을 보였으나, 배양 6시간 이후에는 모든 처리구가 일정하게 낮게 유지되었다. 총 휘발성지방산 농도는 모든 처리구가 배양시간이 경과함에 다라 지속적으로 증가하였으며, 대조구에 비하여 T1구와 T2구의 농도가 유의적으로 낮았다. In vitro 배양 12시간 동안 미생물체 건물 회수율은 T1구가 가장 낮은 반면에 T2구가 가장 효율적으로 미생물을 증가시켰다. 반추미생물체 내 Cr 농도는 대조구와 T2구간에는 차이가 없었으나(P>0.05), T1구는 유의적(P>0.05)으로 높게 나타났다. 반추미생물체 내 methionine 및 cyctine 농도는 대조구와 T2구간에는 차이(P>0.05)가 없었으나, T1구는 비교적 낮은 경향을 보였다. 본 시험의 결과를 종합해 보면, 크라민®의 첨가에 따른 in vitro 배양액내 pH 및 암모니아 농도를 포함한 발효특성에 대한 부의 영향은 없는 것으로 판단되며, 오히려 미생물체 단백질의 합성에 이용되어 암모니아의 생성량과 총미생물 건물 회수량을 증가시킬 수 있는 것으로 판단된다. 또한 크라민®은 반추 미생물에 의해 상당히 제한적으로 분해되기 때문에 반추위를 회피해서 소장으로 by-pass 되어 이용된 것으로 판단되었다.

Keywords

References

  1. Anderson, R. A. 1988. Chromium. In: Smith, K. (Ed.), Trace elements in Food. Marcel Dekker, New York. pp. 231-247
  2. Bryant, M. P. 1974. Nutritional features and ecology of predominant anaerobic bacteria of the intestinal tract. Am. J. Clin. Nutr. 27:1313
  3. Chang, X. and Mowat, D. N. 1992. Supplemental chromium for stressed and growing feeder calves. J. Anim. Sci. 70:559
  4. Church, D. C. 1988. The ruminant animal. Digestive physiology and nutrition. Prentice Hall. Englewood Cliffs. New Jersey
  5. Erdman, R. A. 1985. Effect of abomasal and dietary choline on milk yield and composition in first lactation dairy cows. J. Dairy Sci. 68:134 (Abstr.)
  6. Evans, G. W. 1989. The effect of chromium picolinate om insulin controlled parameters in humans. Int. J. Biosocial. Med. Research. 11:163- 180
  7. Hiroaki, S. 1997. Control of Secretion and Action of Insulin by Volatile Fatty Acids in Ruminants. Animal Sci. and Technol. (Jpn). 68:993-1002
  8. Jeffrey, A. and Fisher, M. D. 1990. The Chromium Program. New York, 1-5
  9. Kegley, E. B., Spears, J. W. and Jr. Brown, T. T. 1997. Effect of shipping and Chromium Supplementation on performance, Immune Response, and Disease Resistance of Steers. 75:1956-1964
  10. Mason, V. C., Bach, A. S. and Rudeom, M. 1980. Hydrolysate prepararation for amino acids determinations in feed constituents. 3rd EAAP- Symposium on protein metabolism and nutrition. Braunchweig
  11. Mertz, W. and Roginski, E. E. 1969. Effects of chromium(III) supplementation on growth and survival under stress in rats fed low protein diets. J. Nutr. 97:531
  12. Moonsie-shageer and Mowat, D. N. 1993. Effect of level of supplemental chromium on perfor- mance, serum constituents and immune status of stressed feeder calves. J. Anim. Sci. 71:232-238
  13. Page, T. G., Southern, L. L., Ward, T. L. and Thompson, Jr. D. L. 1993. Effect of chromium picolinate on growth and serum and carcass traits of growing-finishing pig. J. Anim. Sci. 71:656
  14. SAS. 1990. SAS/STAT guide for personal computers@6.08. SAS Institute Inc. Cary, USA
  15. Shultz, T. A. and Shultz, E. 1970. Estimation of rumen microbial nitrogen by three analytical methods. J. Dairy Sci. 53:781-784 https://doi.org/10.3168/jds.S0022-0302(70)86290-7
  16. Shwartz, K. and Merts, W. 1959. Chromium(III) and the glucose tolerance factor. Arch. Biochem. Biophys. 72:515-518 https://doi.org/10.1016/0003-9861(57)90228-X
  17. Smith, R. H. 1979. Synthesis of microbial nitrogen compounds in the rumen and their subsequent digestion. J. Anim. Sci. 49(6):1604
  18. Steele, N. C., Althen, T. G. and Frobish, L. T. 1977. Biological activity of glucose tolerance factor in swine. J. Anim. Sci. 45:1341
  19. Stern, M. D., Hoover, W. H. and Crooker, P. H. 1978. Effects of nonstructural carbohydrate, urea and soluble protein synthesis in continuous culture of rumen contents. J. Anim. Sci. 47:944
  20. Swanson, K. C., Harmon, D. L., Jacques, K. A., Larson, B. T., Richards, C. J., Bohnert, D. W. and Paton, S. J. 2000. Efficacy of chromium-yeast supplementation for growing beef steers. 86:95- 105 https://doi.org/10.1016/S0377-8401(00)00142-5
  21. Votava, H. J., Hahn, C. J. and Evans, G. W. 1973. Isolation and partial characterrization of a 51Cr complex from brewer's yeast. Biochem. Biophys. Res. Commun. 55:312 https://doi.org/10.1016/0006-291X(73)91089-9
  22. 박병기, 박재인, 라창식, 신종서. 2002. 폐기균체의 재활용에 관한 연구. 강원대학교 동물자원공동연구소 논문집 동물자원연구. 13:166-175
  23. 엄창국, 박병기, 박재인, 김창혁, 고용균, 김종복, 홍병주, 신종서. 2002. 알코올 발효사료 급여가 반추위내 발효성상 및 미생물 단백질 합성에 미치는 영향. 강원대학교 동물자원공동연구소 논문집 동물자원연구. 13:207-219

Cited by

  1. Effects of forage level and chromium-methionine chelate supplementation on performance, carcass characteristics and blood metabolites in Korean native (Hanwoo) steers vol.57, pp.1, 2015, https://doi.org/10.1186/s40781-015-0043-7