PAH and Soot Formation Characteristics of DME/Ethylene Fuel

DME/에틸렌 연료의 PAH 및 매연의 생성 특성

  • Published : 2005.05.01

Abstract

In order to investigate the effect of dimethyl ether (DME) on PAH and soot formation, the fuel has been mixed to the counter-flow diffusion flames of ethylene. Laser-induced incandescence and laser-induced fluorescence techniques were employed to measure relative concentrations of soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Results showed that even though pure DME flame produces the minimal amount of PAH and soot, the mixture fuel of DME and ethylene could increase PAH and soot formation, as compared to those of pure ethylene flame. This implies that even though DME has been known to be a clean fuel for soot formation, the mixture fuel of DME and the hydrocarbon fuel could produce enhanced production of soot. Numerical simulation demonstrated that methyl (CH$_{3}$) radical generated by the initial pyrolysis of DME can be contributed to the enhancement of PAH and soot formation, through the formation of propargyl (C$_{3}$H$_{3}$) radical.

Keywords

References

  1. Randall L. Vander Wal., K. A. Jensen and M. Y. Choi, 'Simultaneous Laser-Induced Emission of Soot and Polycyclic Aromatic Hydrocarbons Within a Gas-Jet Diffusion Flame', Combust. Flame Vol.109, pp.399-414, 1997 https://doi.org/10.1016/S0010-2180(96)00189-7
  2. I. Glassman, 'Soot Formation in Combustion Process,' 22th Proc. Combust. Inst., pp.295-311, 1988
  3. M. Frenklach, D. W. Clary, C. William, J. R. Gardiner, and E. S. Stephen, 'Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene,' 20th Proc. Combust. Inst., pp.887-901, 1984
  4. A. D'Anna, A. Violi, and A. D'Alessio, 'Modeling the rich combustion of aliphatic hydrocarbons,' Combust. Flame, Vol.121, pp.418-429, 2000 https://doi.org/10.1016/S0010-2180(99)00163-7
  5. J. A. Miller, 'Theory and Modeling in Combustion Chemistry,' 26th Proc. Combust. Inst., pp.461-480, 1996
  6. N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. E. Lutz, A. M. Vincitore and S. M. Senkan, 'Chemical Kinetic Modeling of a Methane Opposed-Flow Diffution Flame and Comparison to Experiments,' 27th Proc. Combust. Inst., pp.605-613, 1998
  7. S. S. Yoon, S. M. Lee and S. H. Chung, 'Effect of Mixing Methane, Ethane, Propane and Propene on the Synergistic Effect of PAH and Soot Formation in Ethylene-Base Counterflow Diffusion Flames,' 30th Proc. Combust. Inst., To be published
  8. J. B. Hansen, B. Voss, F. Joensen and I. D. Siguroardottir, 'Laser Scale Manufacture of Dimethy Ether - A New Alternative Diesel Fuel from Natural Gass,' SAE 950063, 1995
  9. D. Gill, and H. Ofner, 'Dimethyl Ether - A Clean Fuel for Transportation,' SAE 990959, 1999
  10. L. A. Melton, Applied Optics, Vol.23, pp.2201-2208, 1984 https://doi.org/10.1364/AO.23.002201
  11. Randall L. Vander Wal, Applied Optics, Vol.35, No.33, pp.5548-6559, 1996
  12. Z. Qin, V. V. Lissianski, H. Yang, SW. C. Gardiner, S. G. Davis and H. Wang, 28th Proc. Combust. Inst., pp.1663, 2000
  13. S. L. Fischer, F. L. Dryer and H. J. Curran, 'The Reaction Kinetics of Dimethyl ether. I: High-Temperature Pyrolysis and Oxidation in Flow Reactors,' Int. J. Chem. Kinet., Vol.32, pp.713-740, 2000 https://doi.org/10.1002/1097-4601(2000)32:12<713::AID-KIN1>3.0.CO;2-9
  14. H. J. Curran, S. L. Fischer and F. L. Dryer, 'The Reaction Kinetics of Dimethyl ether. II: Low-Temperature Oxidation in Flow Reactors,' Int. J. Chem. Kinet., Vol.32, pp.741-759, 2000 https://doi.org/10.1002/1097-4601(2000)32:12<741::AID-KIN2>3.0.CO;2-9
  15. S. D. Lee and S. H. Chung, 'On the Structure and Extinction of Interacting Lean Methane/Air Premixed Flames,' Combust. Flame, Vol.98, p.80, 1994 https://doi.org/10.1016/0010-2180(94)90199-6