Polyester Nanocomposite Fibers with Organoclay; Thermo-Mechanical Properties and Morphology of PBT, PET, and PTT

유기화 점토를 이용한 폴리에스테르 나노복합체 섬유; PBT, PET, 그리고 PTT의 열적-기계적 성질 및 모폴로지

  • Kim Sung Jong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Mun Mu Kyung (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 김성종 (금오공과대학교 고분자공학과) ;
  • 문무경 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Published : 2005.03.01

Abstract

Nanocomposites of three different polyesters with dodecyltriphenylphosphonium-montmorillonite $(C_{12}PPh-MMT)$ as an organoclay are compared with their thermal properties, mechanical properties, and morphologies. Poly (butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and poly(trimethylene terephthalate) (PTT) were used as matrix polymers in the fabrication of polyester nanocomposite fibers. The variations of their properties with organoclay content in the polymer matrix and draw ratio (DR) are discussed. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the polyester nanocomposite fibers. Even polymers with low organoclay contents $(<5\;wt\%)$ were found to exhibit much higher strength and modulus values than pure polyester fibers. In the cases of all polyester hybrid fibers, the values of the tensile mechanical properties were found to decrease linearly with increasing DR. However, the initial tensile modulus of the PTT hybrid fibers were found to be independent of DR.

유기화 점토인 도데실트리페닐포스포늄-몬모릴로나이트$(C_{12}PPh-MMT)$를 이용한 세가지 서로 다른 폴리에스테르 나노복합재료의 열적, 기계적 성질 및 모폴로지 등을 서로 비교하였다. 매트릭스 고분자로 폴리(부틸렌 테레프탈레이트)(PBT), 폴리(에틸렌 테레프탈레이트)(PET)와 폴리(트리메틸렌 테레프탈레이트)(PTT) 등을 사용하여 폴리에스테르 나노복합체 섬유를 만들었다. 각 나노복합체 섬유의 물성들은 첨가된 유기화 점토의 양과 연신 비에 따라 변하였다. 전자현미경으로 관찰된 섬유 중 점토의 일부는 나노크기로 잘 분산 되었으나 한편으로는 동시에 뭉쳐진 형태도 보였다. 본 연구로부터 소량의 유기화 점토의 첨가가 나노복합체 섬유의 열 안정성과 기계적 성질을 증가시키는데 크게 기여하였음을 알았고, $5\;wt\%$ 이하의 소량의 점토만으로도 순수한 매트릭스 고분자 섬유의 강도나 탄성률보다 더 높은 값을 보여주었다. 연신 비가 증가할수록 모든 고분자 복합체 섬유의 강도와 탄성률은 서서히 감소하였으나 PTT의 초기 탄성률은 연신 비에 무관하게 일정하였다.

Keywords

References

  1. T. J. Pinnavaia, Science, 220, 365 (1983)
  2. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 5, 1064 (1993)
  3. E. P. Giannelis, Adv. Mater., 8, 29 (1996)
  4. J. W. Gilman, Appl. Clay. Sci., 15, 31 (1999)
  5. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons Ltd., Chichester, England, 2001
  6. Y. Imai, S. Nishimura, E. Abe, H. Tateyama, A. Abiko, A. Yamaguchi, T. Aoyama, and H. Taguchi, Chem. Mater., 14, 477 (2002)
  7. G. Lagaly, Appl. Clay. Sci., 15, 1 (1999)
  8. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Appl. Polym. Sci., 55, 119 (1995)
  9. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; Part A: Polym. Chem., 31, 2493 (1993)
  10. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Macromolecules, 36, 9851 (2003)
  11. R. K. Bharadwaj, Macromolecules, 34, 9189 (2001) https://doi.org/10.1021/ma002404h
  12. Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi, and O. Kamigaito, Clay Miner., 23, 27 (1998)
  13. J. S. Shelley, P. T. Mather, and K. L. DeVries, Polymer, 42, 5849 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  14. Y. Li and H. Ishida, Chem. Mater., 14, 1398 (2002)
  15. X. Li, T. Kang, W.-J. Jo, J.-K. Lee, and C.-S. Ha, Macromol. Rapid. Commun., 22, 1306 (2001)
  16. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2934 (2000)
  17. I. Cendoya, D. Lopez, A. Alegria, and C. Mijangos, J. Polym. Sci.; Part B: Polym. Phys., 39, 1968 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<1::AID-POLB10>3.0.CO;2-4
  18. I. L. Jin, T. T. Albrecht, H. C. Kim, T. P. Russell, and J. Wang, Polymer, 42, 5947 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  19. S. H. Hwang, S. W. Paeng, J. Y. Kim, and W. Huh, Polym. Bull., 49, 329 (2003)
  20. D. Wang, J. Zhu, Q. Yao, and C. A. Wilkie, Chem. Mater., 14, 3837 (2002)
  21. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay. Sci., 12, 11 (1999)
  22. J.-H. Chang, Y. U. An, S. J. Kim, and S. Im, Polymer, 44, 5655 (2003) https://doi.org/10.1016/S0032-3861(03)00613-X
  23. J.-H. Chang, S. J. Kim, Y. L. Joo, and S. Im, Polymer, 45, 919 (2004) https://doi.org/10.1016/j.polymer.2003.11.037
  24. J.-H. Chang and Y. U. An, J. Polym Sci.; Part B: Polym. Phys., 40, 670 (2002) https://doi.org/10.1002/polb.10124
  25. S. H. Hsiao, G. S. Liou, L. and M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  26. Y. Ke, J. Lu, X. Yi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci., 78, 808 (2000)
  27. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 808 (2003) https://doi.org/10.1002/app.11656
  28. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polym. Phys., 40, 2661 (2002)
  29. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma002404h
  30. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mater., 8, 2628 (1996)
  31. J.-H. Chang, B. S. Seo, and D. H. Hwang, Polymer, 43, 2969 (2002)
  32. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002)
  33. Z. Wang, T. Lan, and T. J. Pinnavaia, Chem. Mater., 8, 2200 (1996) https://doi.org/10.1021/cm960263l
  34. A. Akelah and A. Moet, J. Mater. Sci., 31, 3589 (1996)
  35. A. Okada and A. Usuki, Mater. Sci. Eng., C3, 109 (1995)
  36. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; PartA: Polym. Chem., 31, 1755 (1993)
  37. L. Chen and S.-C. Wong, J. Appl. Polym. Sci., 88, 3298 (2003)
  38. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993)
  39. K. K. Chawla, Composite Materials Science and Engineering, Springer-Verlag, NY, 1987
  40. W. A. Curtin, J. Am. Ceram. Soc., 74, 2837 (1991)
  41. D. Shia, Y. Hui, S. D. Burnside, and E. P. Giannelis, Polym. Eng. Sci., 27, 887 (1987)
  42. R. W. Siegel, S. K. Chang, B. J. Ash, J. Stone, P. M. Ajayan, R. W. Doremus, and L. S. Schadler, Scripta. Mater., 44, 2061 (2001) https://doi.org/10.1016/S1359-6462(00)00555-8