DOI QR코드

DOI QR Code

Genetic Study of Mating System of Sasa borealis in Korea

한국내 조릿대의 교배계에 대한 유전학적 연구

  • Huh Man Kyu (Department of Molecular Biology, dongeui University) ;
  • Roh Kwang Soo (Department of Biology, Keimyung University)
  • Published : 2005.02.01

Abstract

Sasa borealis Makino is distributed in East Asia such as Korea, Fushun in China, and Japan. Especially the species is only found in the high altitude (above 600 m) at mountain of cold regions including The Korean Peninsula. The level of genetic diversity and population structure of this species was surveyed using starch gel electrophoresis at putative five enzyme loci from three natural populations in Korea. Results from twelve loci indicated that genetic diversity was low. In addition, analysis of fixation indices revealed a substantial heterozygosity deficiency in some populations and loci. The reasons for the deficit of heterozygosity may be partly considered inbreeding, small population sizes, and mating of demes. S. borealis can reproduce extensively by producing rhizomes and potentially by sexually produced seeds. Rhizomes are generally long, prostate stems rooting at the nodes.

조릿대(S. borealis)는 다년생 초본으로 한국, 일녈, 중국의 일부에 제한적으로 분포한다. 이 종은 자가 및 타가수분에 의한 혼합번식 형태를 취한다. 전분 전기영동을 이용한 12개의 대립 유전자좌위에서 종의 교배계를 조사하였다. 교배계에서 타가 및 자가 수분, 그리고 줄기의 변형으로 영양번식이 이루어지는 매우 복잡한 혼합 방식의 교배 양식은 제한된 분포, 고산식생대 등의 환경에서 생존할 수 있는 조릿대의 생존전략과도 관련이 있을 것으로 보인다 또한 일부 자생지 파괴에 대한 유효집단의 감소가 일어나 생물자원 확보를 위한 자생지 보존이 필요하다

Keywords

References

  1. Aide, T. M. 1986. The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40, 434-435 https://doi.org/10.2307/2408824
  2. Allard, R. W. 1975. The mating system and microevolution. Genetics 79, 115 -126
  3. Brown, A. H. D. and R. W. Allard. 1970. Estimation of mating systems in open-pollinated maize populations using: isozyme polymorphism. Genetics 66, 133-145
  4. Brown, A. H. D. 1990. Genetic characterization of plant mating systems. pp. 145-162, In Brown, A. H. D., M. T. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Papulation Genetics, Breeding, and Genetic Resources, Sinaur, Sunderland, MA
  5. Brown, A. H. D., J. J. Burdon and A. M. Jarosz. 1989. Isozyme analysis of plant mating systems. pp. 73-86, In Soltis D. F. and P. S. Soltis (eds.), Isozyme Plant Biology, Dioscorides Press, Portland, Oregon
  6. Brown, A. H. D. 1989. Genetic characterization of plant mating system. pp. 145-162, In Brown, A. H. D., M. T. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Papulation Genetics, Breeding, and Genetic Resources, Sinauer, Sunderland, MA
  7. Charlesworth, D. and B. Charlesworth. 1987. Inbreeding depression and its evolutionary consequences. Ann. Rev. Eco. and Syst. 18, 237-268 https://doi.org/10.1146/annurev.es.18.110187.001321
  8. Falconer, D. S. 1981. Introduction to Quantitative Genetics. pp. 340, 2nd eds., John Wiley and Sons. New York
  9. Fisker and Mathies. 1997. Mating system and inbreeding and outbreeding depression in the rare plant. Gentianella germanica (Gentianaceae). Am. J. Bot. 84, 1685-1692 https://doi.org/10.2307/2446466
  10. Fyfe, J. L. and N. T. J. Bailey. 1951. Plant breeding studies in leguminous forage crops. 1. Natural cross breeding in winter beans. J. Agri. Sci. 41, 371-378 https://doi.org/10.1017/S0021859600049558
  11. Godt, M. J. W. and J. L. Hamrick. 1995. Low levels of allozyme differentiation between Pyxidanthera texa. Evolution 195, 159-168
  12. Hamrick, J. L., Y. B. Linhart and J. B. Mitton. 1979. Relationships between life history characteristics and eletrophoretically detectable genetic variation in plant. Ann. Rev. Eco. System. 10, 173-200 https://doi.org/10.1146/annurev.es.10.110179.001133
  13. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. pp. 43-63, In Brown, A. H. D., M. 1. Clegg, A. L. Kaher and B. S. Weir (eds.), Plant Population Genetics, Breeding, and Genetic Resources, Sinauer Associates, Ins., Sunderland
  14. Liengsiri, C., T. J. B. Boyle and F. C. Yeh. 1998. Mating system in Pterocarpus macrocarpus Kurz in Thailand. J. Hered. 89, 216-221 https://doi.org/10.1093/jhered/89.3.216
  15. Mitton, J. B., Y. B. Linhart, K. B. Sturgeon and J. L. Hamrick. 1979. Allozyme polymorphisms detected in mature needle tissue of Pondersa pine. J. Hered. 70, 86-89
  16. Morgenstern, E. K 1972. Preliminary estimates of inbreeding in natural populations of black spruce, Picea mariana. Can. J. Bot. 14, 443-446
  17. Murawski, D. A. and K. S. Bawa. 1994. Genetic structure and mating system of Stemonoporus oblongifolius (Dipterocarpaceae) in SriLanka. Am. J. Bot. 81, 155-160 https://doi.org/10.2307/2445628
  18. Ritland, K. and S. Jain. 1981. A model of for estimation of outcrossing rate and gene frequencies using n-independent loci. Heredity 47, 35-52 https://doi.org/10.1038/hdy.1981.57
  19. Soltis, D. E., H. Haufer, D. C. Darrow and G. J. Gastony. 1983. Starch gel electrophoresis of ferns: A complication of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27 https://doi.org/10.2307/1546611
  20. Van Treuren, R., R. Bijlsma, W. Van Delden and N. J. Ouborg. 1991. The significance of genetic erosion in the process of extinction. 1. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66, 181-189 https://doi.org/10.1038/hdy.1991.23
  21. Weeden, N. F. and J. F. Wendel. 1989. Genetics of plant isozymes. pp. 46-72, In Soltis, D. E. and P. S. Soltis (eds.), Isozymes in Plant Biology, Dioscorides Press, Portland
  22. Wright, S. 1965. The interpretation genetic population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420 https://doi.org/10.2307/2406450