배양기의 작동인자가 Thraustochytrium aureum ATCC 34304의 성장 및 Docosahexaenoic acid(DHA)의 생합성에 미치는 영향규명

Effect of Operating Factors on the Growth and DHA Biosynthesis of Thraustochytrium aureum ATCC 34304

  • 조대원 (인하대학교 공과대학교 생물공학과) ;
  • 송상규 (인하대학교 공과대학교 생물공학과) ;
  • 김원호 (인하대학교 공과대학교 생물공학과) ;
  • 허병기 (인하대학교 공과대학교 생물공학과)
  • Cho Dae-Won (Department of Biological Engineering, Inha University) ;
  • Song Sang-Kue (Department of Biological Engineering, Inha University) ;
  • Kim Won-Ho (Department of Biological Engineering, Inha University) ;
  • Hur Byung-Ki (Department of Biological Engineering, Inha University)
  • 발행 : 2005.03.01

초록

교반속도와 배양온도가 T. aureum ATCC 3430의 성장과 지질 및 DHA 생합성에 미치는 영향을 규명하였다. 배양온도 $4^{\circ}C$내지 $39{\circ}C$범위에서 균체성장에 최적인 온도는 $32^{\circ}C$이었으며, DHA와 지질의 생성량이 가장 높은 온도는 $18^{\circ}C$이였다. 배양온도 $39^{\circ}C$ 이상과 $11^{\circ}C$이하에서는 균체의 성장량과 DHA및 지질의 생성량이 대단히 적었으나, 온도가 낮을수록 단위균체당 축적되는 지질과 DHA의 함량은 증가하여 배양온도 $4^{\circ}C$에서는 $Y_{L/X}$의 값이 $32^{\circ}C$가지, $Y_{DHA/X}$의 값은 $15\%$까지 증가하였다. 교반속도 50내지 250rpm사이에서 균체성장이 가장 높은 교반속도는 100rpm이였다. 교반속도 100과 250rpm사이에서는 교반속도가 균체의 성장량과 지질 및 DHA생합 성량에는 영향을 미치지 아니하였으나, 교반속도가 50 rpm으로 감소하면 균체 성장량과 지질 및 DHA생성량이 모두 크게 감소하였다.

The effect of rotation speed and culture temperature on the growth of T. aureum and also the biosynthesis of lipid and DHA was investigated. The optimal temperature for the growth was $32^{\circ}C$, but the best temperature for the maximum production of lipid and DHA was $18^{\circ}C$ in the range of $4^{\circ}C\;to\;39^{\circ}C$. In the case that the temperature was higher than $39^{\circ}C$ and lower than $11^{\circ}C$, the growth was very slow and the production of DHA was also very low. However, the lipid content in the biomass became higher with decrease in the culture temperature. The rotation speed for the maximum growth was 100rpm. But the growth and the production of DHA were not affected by the change of rotation speed in the range of 100 to 250 rpm. When the rotation speed was 50 rpm, the growth as well as the production of DHA and lipid was greatly reduced.

키워드

참고문헌

  1. Bajpai, P. K, P. Bajpai, and O. P. Ward. 1991. Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. JAOCS 68: 509-514 https://doi.org/10.1007/BF02663823
  2. Braden, L. M., and Carroll K. K. 1986. Dietary ploysaturated fat in relation to mammorial carcinogenesis in rats. Lipids 21: 285-288 https://doi.org/10.1007/BF02536414
  3. Carlson, S. E. 1996. Arachidonic acid status of human infants: influence of gestational age at birth and diets with very long chain n-3 and n-6 fatty acids. J. Nutr. 126: 1092S-1098S
  4. Cohen, Z. C., A, Vonshak, and A. Richmond. 1987. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26: 2255-2258 https://doi.org/10.1016/S0031-9422(00)84694-4
  5. Dratz, E. A., and A. J. Deese. in A. P. Simopoules, R. R. Kifer, and R. E. Martin. 1986. Health effects of polyunsaturated fatty acid in seafoods. pp 319-330, Academic Press Inc., Florida
  6. Dyerberg, J. 1986. Linolenate-derived polyunsaturated fatty acids and prevention of Atherosclerosis. Nutrition Reviews 44: 125-134 https://doi.org/10.1111/j.1753-4887.1986.tb07603.x
  7. Gascon, A, J. Helene, M. Sital, D. Yves, L. D. Brun, and P. Julien. 1996. Plasma lipoprotein profile and lipolytic activi-ties in response to the substitution of lean white fish for other animal protein sources in premenopausal women. Am. J. Clin. Nutr. 63: 315-321
  8. Ghisolfi, J. 1995. Acid gras polyinsatures et development cerebral et sensoriel du nourrisson Archives de Pediatrie 2: 825-830 https://doi.org/10.1016/0929-693X(96)81257-7
  9. Horrocks, L. A. and Yeo, Y. K. 1999. Health benefits of docosahexaenoic acid (DHA). Phamacol Res. 40: 211-225
  10. Jiang, Y. and F. Chen. 2000. Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem. 35: 1205-1209 https://doi.org/10.1016/S0032-9592(00)00163-1
  11. Lepage, C. and C. C. Roy. 1984. Improved recovers of fatty acid through direct transesterification without prior extraction and purification. J. Lipid Res. 25: 1391-1396
  12. Neidelman, S. L. 1987. Effect of temperature on lipid un saturation. Biotechnology and Genetic Eng. Rev. 5: 245-268
  13. Park, B. S., B. J. Hwang, S. J. Lee, and Y. C. Lee. 1994. Omega-fatty acid. pp. 58-59, Ukil Cultural Publisher Inc., Korea
  14. Peberdy, J. F. and D. K. Toomer. 1975. Effect of nutrient starvation on the utilization of storage lipids in Mortiesella ramaruiana. Microbios. 13: 123-131
  15. Radwan, S. S. and A. H. Soliman. 1988. Arachidonic acid from fungi utilizing fatty acids with short chains as sole sources of carbon and energy. J. Gen. Microbiol. 134: 387-393
  16. Sajbidor, J., S. Dobronova, and M. Certik. 1990. Arachidonic acid production by Mortierella sp. S-17: influence of C/N ratio. Biotechnol. Lett. 12: 455-456 https://doi.org/10.1007/BF01024404
  17. Salem, N., H. Y. Kim, and J. A. Yargey. in A. P. Simopoulos, P. R. Kifer, and R. E. 1986. Health effects of polyunsaturated fatty acids in seafoods. pp 49-60, Academic Press Inc., Florida
  18. Singh, A. and O. P. Ward. 1996. Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J. Ind. Microbiol. 12: 370-373
  19. Stinson, I. E., R. Kwoczak, and M. J. Kuruntz. 1991. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare. J. Ind. Microbiol. 8: 171-178 https://doi.org/10.1007/BF01575850
  20. Ward, O. P. 1995. microbial production of long-chain PUFAs. INFORM 6: 683-688
  21. Yongmanitchai, W. and P. W. Owen. (1989) Omega-3 fatty acids : Alternative sources of production. Process Biochem. 24: 117-125
  22. Yokochi, T, D. Honda, T Higashihara, and T Nakahara 1998. Optimization of docosahexaenoic acid production by Schizochytrium limacium SR21. Appl. Microbiol. Biotechnol. 49: 72-76 https://doi.org/10.1007/s002530051139