Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University) ;
  • Kim Si-Wouk (Department of Environmental Engineering, Chosun University) ;
  • Kim Myong-Jun (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University) ;
  • Kim Seong-Jun (Department of Civil, Geosystem and Environmental Engineering, College of Engineering, Chonnam National University)
  • Published : 2005.02.01

Abstract

The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Keywords

References

  1. Allen, S. G., D. Schulman, J. Lichwa, and M. J. Antal Jr (2001) A comparison between hot liquid water and steam fractionation of corn fiber. Ind. Eng. Chem. Res. 40: 2934- 2941 https://doi.org/10.1021/ie990831h
  2. Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem. 35: 367-375 https://doi.org/10.1016/S0032-9592(99)00080-1
  3. Bhat, M. K. and S. Bhat (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv. 15: 583-620 https://doi.org/10.1016/S0734-9750(97)00006-2
  4. Converse, A. O., H. Ooshima, and D. S. Burns (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol. 24/25: 67-73 https://doi.org/10.1007/BF02920234
  5. Desai, S. G. and A. O. Converse (1997) Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol. Bioeng. 56: 650- 655 https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<650::AID-BIT8>3.0.CO;2-M
  6. Gan, Q., S. J. Allen, and G. Taylor (2003) Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochem. 38: 1003-1018 https://doi.org/10.1016/S0032-9592(02)00220-0
  7. Gawande, P. V. and M. Y. Kamat (1998) Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100. J. Biotechnol. 66: 165-175 https://doi.org/10.1016/S0168-1656(98)00146-1
  8. Ingesson, H., G. Zacchi, B. Yang, A. R. Esteghlalian, and J. N. Saddler (2001) The effect of shaking regime on the rate and extent of enzymatic hydrolysis of cellulose. J. Biotechnol. 88: 177-182 https://doi.org/10.1016/S0168-1656(01)00273-5
  9. JI, G. E., H. K. Han, S. W. Yun, and S. L. Rhim (1992) Isolation of amylolytic Bifidobacterium sp. Int-57 and characterization of amylase. J. Microbiol. Biotechnol. 2: 85-91
  10. Kim, E. K., D. C. Irwin, L. P. Walker, and D. B. Wilson (1998) Factorial optimization of a six-cellulase mixture. Biotechnol. Bioeng. 58: 494-501 https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<494::AID-BIT5>3.0.CO;2-8
  11. Kim, K. C., S. S. Yoo, Y. A. Oh, and S. J. Kim (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 12: 1-8
  12. Lee, H. K. and S. I. Hong (1987) Effect of inhibitor on enzymatic hydrolysis of cellulose. Hwahak Konghak 25: 109-114
  13. Lee, J. H., S. O. Lee, G. O. Lee, E. S. Seo, S. S. Chang, S. K. Yoo, D. W. Kim, D. F. Day, and D. Kim (2003) Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase from Lipomyces starkeyi. Biotechnol. Bioprocess Eng. 8: 106-111 https://doi.org/10.1007/BF02940265
  14. Lin, J, Q., S. M. Lee, and Y. M. Koo (2001) Hydrolysis of paper mill sludge using an improved enzyme system. J. Microbiol. Biotechnol. 11: 362-368
  15. Mansfield, S. D., C. Mooney, and J. N. Saddler (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15: 804-816 https://doi.org/10.1021/bp9900864
  16. Medve, J., J. Karlsson, D. Lee, and F. Tjerneld (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and Endoglucoanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59: 621-634 https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.0.CO;2-C
  17. Min, S. Y., B. G. Kim, C. Lee, H. G. Hur, and J. H. Ahn (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 12: 890-894
  18. Ooshima, H., D. S. Burns, and A. O. Converse (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng. 36: 446-452 https://doi.org/10.1002/bit.260360503
  19. Ooshima, H., M. Kurakake, J. Kato, and Y. Harano (1991) Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol. 31: 253-266 https://doi.org/10.1007/BF02921752
  20. Park, E. Y., Y. Ikeda, and N. Okuda (2002) Empirical evaluation of cellulose on enzymatic hydrolysis of waste office paper. Biotechnol. Bioprocess Eng. 7: 268-274 https://doi.org/10.1007/BF02932835
  21. Sethi, B., S. Mishra, and V. S. Bisaria (1998) Adsorption characteristics of cellulases from a constitutive mutant of Trichoderma reesei. J. Ferment. Bioeng. 86: 233-235 https://doi.org/10.1016/S0922-338X(98)80119-0
  22. Svetlana, V., R. M. Mark, and F. O. David (1997) Kinetic model for batch cellulase production by Trichoderma reesei RUT C30. J. Biotechnol. 54: 83-94 https://doi.org/10.1016/S0168-1656(97)01669-6
  23. Sohn, C. B., M. H. Kim, J. S. Bae, and C. H. Kim (1992) $\beta$-Amylase system capable of hydrolyzing raw starch granules from Bacillus polymyxa No. 26 and bacterial identification. J. Microbiol. Biotechnol. 2: 183-188
  24. Son, C. J., S. Y. Chung, J. E. Lee, and S. J. Kim (2002) Isolation and cultivation characteristics of Acetobacter xylinum KJ-1 producing bacterial cellulose in shaking cultures. J. Microbiol. Biotechnol. 12: 722-728
  25. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technol. 83: 1-11 https://doi.org/10.1016/S0960-8524(01)00212-7
  26. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki (2003) Thermostable and alkaline-tolerant microbial cellulase- free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: A review. Process Biochem. 38: 1327-1340 https://doi.org/10.1016/S0032-9592(02)00331-X
  27. Tengborg, C., M. Galbe, and G. zacchi (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol. Prog. 17: 110-117 https://doi.org/10.1021/bp000145+
  28. Thomas, M. W. and K. M. Bhat (1988) Methods for measuring cellulase activities. Method. Enzymol. 160: 87-112 https://doi.org/10.1016/0076-6879(88)60109-1
  29. Wan Mohtar, Y., M. I. Massadeh, and J. Kader (2000) Solid substrate and submerged culture fermentation of sugar cane bagasse for the production of cellulase and reducing sugars by a local isolate, Aspergillus terreus SUK-1. J. Microbiol. Biotechnol. 10: 770-775
  30. Wu, J. and L. K. Ju (1998) Enhancing enzymatic saccharification of waste newsprint by surfactant addition. Biotechnol. Prog. 14: 649-652 https://doi.org/10.1021/bp980040v
  31. Yoo, S. S., K. C. Kim, Y. A. Oh, S. Y. Chung, and S. J. Kim (2002) The high production of cellulolytic enzymes using cellulosic wastes by a fungus, strain FJ1, Kor. J. Microbiol. Biotechnol. 30: 172-176
  32. Zhang, S., D. E. Wolfgang, and D. B. Wilson (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng. 66: 35-41 https://doi.org/10.1002/(SICI)1097-0290(1999)66:1<35::AID-BIT3>3.0.CO;2-G